These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 23011008)
1. Estimating changes of isotopic fractionation based on chemical kinetics and microbial dynamics during anaerobic methane oxidation: apparent zero- and first-order kinetics at high and low initial methane concentrations. Vavilin VA Antonie Van Leeuwenhoek; 2013 Feb; 103(2):375-83. PubMed ID: 23011008 [TBL] [Abstract][Full Text] [Related]
2. Non-linear dynamics of carbon and hydrogen isotopic signatures based on a biological kinetic model of nitrite-dependent methane oxidation by "Candidatus Methylomirabilis oxyfera". Vavilin VA; Rytov SV Antonie Van Leeuwenhoek; 2013 Dec; 104(6):1097-108. PubMed ID: 24057983 [TBL] [Abstract][Full Text] [Related]
3. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Deusner C; Meyer V; Ferdelman TG Biotechnol Bioeng; 2010 Feb; 105(3):524-33. PubMed ID: 19787639 [TBL] [Abstract][Full Text] [Related]
4. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
5. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Michaelis W; Seifert R; Nauhaus K; Treude T; Thiel V; Blumenberg M; Knittel K; Gieseke A; Peterknecht K; Pape T; Boetius A; Amann R; Jørgensen BB; Widdel F; Peckmann J; Pimenov NV; Gulin MB Science; 2002 Aug; 297(5583):1013-5. PubMed ID: 12169733 [TBL] [Abstract][Full Text] [Related]
6. Estimating evolution of δ13CH4 during methanization of cellulosic waste based on stoichiometric chemical reactions, microbial dynamics and stable carbon isotope fractionation. Vavilin VA Bioresour Technol; 2012 Apr; 110():706-10. PubMed ID: 22326116 [TBL] [Abstract][Full Text] [Related]
7. Estimating evolution of δ(13)CH(4) during methanization of municipal solid waste based on chemical reactions, isotope accumulation in products and microbial ecology. Vavilin VA Water Sci Technol; 2012; 65(2):270-6. PubMed ID: 22233905 [TBL] [Abstract][Full Text] [Related]
8. [Geochemical characteristics of the carbonate constructions formed during microbial oxidation of methane under anaerobic conditions]. Lein AIu; Ivanov MV; Pimenov NV; Gulin MB Mikrobiologiia; 2002; 71(1):89-102. PubMed ID: 11910813 [TBL] [Abstract][Full Text] [Related]
9. [Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea]. Pimenov NV; Ivanova AE Mikrobiologiia; 2005; 74(3):420-9. PubMed ID: 16119857 [TBL] [Abstract][Full Text] [Related]
10. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
11. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367 [TBL] [Abstract][Full Text] [Related]
12. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Treude T; Orphan V; Knittel K; Gieseke A; House CH; Boetius A Appl Environ Microbiol; 2007 Apr; 73(7):2271-83. PubMed ID: 17277205 [TBL] [Abstract][Full Text] [Related]
13. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631 [TBL] [Abstract][Full Text] [Related]
14. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Moran JJ; Beal EJ; Vrentas JM; Orphan VJ; Freeman KH; House CH Environ Microbiol; 2008 Jan; 10(1):162-73. PubMed ID: 17903217 [TBL] [Abstract][Full Text] [Related]
16. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation. Vavilin VA; Rytov SV; Shim N; Vogt C Isotopes Environ Health Stud; 2016 Jun; 52(3):185-202. PubMed ID: 26513269 [TBL] [Abstract][Full Text] [Related]
17. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Nauhaus K; Treude T; Boetius A; Krüger M Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940 [TBL] [Abstract][Full Text] [Related]
18. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Zhang Y; Henriet JP; Bursens J; Boon N Bioresour Technol; 2010 May; 101(9):3132-8. PubMed ID: 20060292 [TBL] [Abstract][Full Text] [Related]
19. Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett Salt Marsh. Buckley DH; Baumgartner LK; Visscher PT Environ Microbiol; 2008 Apr; 10(4):967-77. PubMed ID: 18218028 [TBL] [Abstract][Full Text] [Related]
20. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea]. Pimenov NV; Ul'ianova MO; Kanapatski TA; Sivkov VV; Ivanov MV Mikrobiologiia; 2008; 77(5):651-9. PubMed ID: 19004347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]