These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23011569)

  • 1. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production.
    Gerken HG; Donohoe B; Knoshaug EP
    Planta; 2013 Jan; 237(1):239-53. PubMed ID: 23011569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall.
    Coelho D; Lopes PA; Cardoso V; Ponte P; BrĂ¡s J; Madeira MS; Alfaia CM; Bandarra NM; Gerken HG; Fontes CMGA; Prates JAM
    Sci Rep; 2019 Mar; 9(1):5382. PubMed ID: 30926940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous enzymatic process for cell wall degradation and lipid extraction from Nannochloropsis sp.
    Wu C; Xiao Y; Lin W; Li J; Zhang S; Zhu J; Rong J
    Bioresour Technol; 2017 Jan; 223():312-316. PubMed ID: 27806886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.
    Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ
    Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.
    Luangpipat T; Chisti Y
    J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testimony on a successful lab protocol to disrupt Chlorella vulgaris microalga cell wall.
    Lopes PA; Coelho D; Prates JAM
    PLoS One; 2022; 17(5):e0268565. PubMed ID: 35587491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation.
    Lin WR; Ng IS
    Enzyme Microb Technol; 2020 Feb; 133():109458. PubMed ID: 31874693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria.
    Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J
    J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel cell disruption technique to enhance lipid extraction from microalgae.
    Steriti A; Rossi R; Concas A; Cao G
    Bioresour Technol; 2014 Jul; 164():70-7. PubMed ID: 24836708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.
    Kim DY; Vijayan D; Praveenkumar R; Han JI; Lee K; Park JY; Chang WS; Lee JS; Oh YK
    Bioresour Technol; 2016 Jan; 199():300-310. PubMed ID: 26342788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, Identification and High-Throughput Screening of Neutral Lipid Producing Indigenous Microalgae from South African Aquatic Habitats.
    Gumbi ST; Majeke BM; Olaniran AO; Mutanda T
    Appl Biochem Biotechnol; 2017 May; 182(1):382-399. PubMed ID: 27864781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.
    Cecchin M; Marcolungo L; Rossato M; Girolomoni L; Cosentino E; Cuine S; Li-Beisson Y; Delledonne M; Ballottari M
    Plant J; 2019 Dec; 100(6):1289-1305. PubMed ID: 31437318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gibberellin Promotes Cell Growth and Induces Changes in Fatty Acid Biosynthesis and Upregulates Fatty Acid Biosynthetic Genes in Chlorella vulgaris UMT-M1.
    Jusoh M; Loh SH; Aziz A; Cha TS
    Appl Biochem Biotechnol; 2019 Jun; 188(2):450-459. PubMed ID: 30536033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.
    Cheng YS; Labavitch JM; VanderGheynst JS
    Lett Appl Microbiol; 2015 Jan; 60(1):1-7. PubMed ID: 25163669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris.
    Sharma AK; Sahoo PK; Singhal S; Joshi G
    Bioresour Technol; 2016 Sep; 216():793-800. PubMed ID: 27318156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production.
    Luque L; Orr VCA; Chen S; Westerhof R; Oudenhoven S; Rossum GV; Kersten S; Berruti F; Rehmann L
    Bioresour Technol; 2016 Aug; 214():660-669. PubMed ID: 27208736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.
    Alam MA; Wan C; Guo SL; Zhao XQ; Huang ZY; Yang YL; Chang JS; Bai FW
    J Biosci Bioeng; 2014 Jul; 118(1):29-33. PubMed ID: 24507901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.