These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23011569)

  • 21. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species.
    Yu H; Kim J; Lee C
    Sci Rep; 2019 Apr; 9(1):6123. PubMed ID: 30992470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production.
    Talebi AF; Tohidfar M; Tabatabaei M; Bagheri A; Mohsenpor M; Mohtashami SK
    Mol Biol Rep; 2013 Jul; 40(7):4421-8. PubMed ID: 23652998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris.
    Bhola V; Desikan R; Santosh SK; Subburamu K; Sanniyasi E; Bux F
    J Biosci Bioeng; 2011 Mar; 111(3):377-82. PubMed ID: 21185776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into cell wall disintegration of Chlorella vulgaris.
    Weber S; Grande PM; Blank LM; Klose H
    PLoS One; 2022; 17(1):e0262500. PubMed ID: 35030225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption.
    Yap BH; Crawford SA; Dagastine RR; Scales PJ; Martin GJ
    J Ind Microbiol Biotechnol; 2016 Dec; 43(12):1671-1680. PubMed ID: 27778140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immobilization of microalgae cells in alginate facilitates isolation of DNA and RNA.
    Lopez BR; Hernandez JP; Bashan Y; de-Bashan LE
    J Microbiol Methods; 2017 Apr; 135():96-104. PubMed ID: 28232090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detailed Characterization of the Cell Wall Structure and Composition of Nordic Green Microalgae.
    Spain O; Funk C
    J Agric Food Chem; 2022 Aug; 70(31):9711-9721. PubMed ID: 35894177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical and Morphological Characterization of Heterotrophic
    Canelli G; Murciano Martínez P; Austin S; Ambühl ME; Dionisi F; Bolten CJ; Carpine R; Neutsch L; Mathys A
    J Agric Food Chem; 2021 Feb; 69(7):2226-2235. PubMed ID: 33570396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.
    Ometto F; Quiroga G; Pšenička P; Whitton R; Jefferson B; Villa R
    Water Res; 2014 Nov; 65():350-61. PubMed ID: 25150520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
    Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protease cell wall degradation of Chlorella vulgaris: effect on methane production.
    Mahdy A; Mendez L; Blanco S; Ballesteros M; González-Fernández C
    Bioresour Technol; 2014 Nov; 171():421-7. PubMed ID: 25226058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.
    Tran DT; Chen CL; Chang JS
    Bioresour Technol; 2013 May; 135():213-21. PubMed ID: 23131310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol.
    Paranjape K; Leite GB; Hallenbeck PC
    Bioresour Technol; 2016 Aug; 214():778-786. PubMed ID: 27220067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced lipid recovery from Nannochloropsis microalgae by treatment with optimized cell wall degrading enzyme mixtures.
    Zuorro A; Miglietta S; Familiari G; Lavecchia R
    Bioresour Technol; 2016 Jul; 212():35-41. PubMed ID: 27078205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calorespirometry: A Novel Tool in Functional Hologenomics to Select "Green" Holobionts for Biomass Production.
    Arnholdt-Schmitt B; Patil VK
    Methods Mol Biol; 2017; 1670():193-201. PubMed ID: 28871544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microalgae harvesting by flotation using natural saponin and chitosan.
    Kurniawati HA; Ismadji S; Liu JC
    Bioresour Technol; 2014 Aug; 166():429-34. PubMed ID: 24935003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodiesel production from microalgae oil catalyzed by a recombinant lipase.
    Huang J; Xia J; Jiang W; Li Y; Li J
    Bioresour Technol; 2015 Mar; 180():47-53. PubMed ID: 25585254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients.
    Liao Q; Chang HX; Fu Q; Huang Y; Xia A; Zhu X; Zhong N
    Bioresour Technol; 2018 Feb; 250():583-590. PubMed ID: 29207290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.