These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23011577)

  • 1. Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries.
    Yan Y; Yin YX; Xin S; Guo YG; Wan LJ
    Chem Commun (Camb); 2012 Nov; 48(86):10663-5. PubMed ID: 23011577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries.
    Xin X; Zhou X; Wu J; Yao X; Liu Z
    ACS Nano; 2012 Dec; 6(12):11035-43. PubMed ID: 23185962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries.
    Ma X; Ning G; Qi C; Xu C; Gao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14415-22. PubMed ID: 25105538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries.
    Wang B; Li K; Su D; Ahn H; Wang G
    Chem Asian J; 2012 Jun; 7(7):1637-43. PubMed ID: 22454319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries.
    Xia F; Hu X; Sun Y; Luo W; Huang Y
    Nanoscale; 2012 Aug; 4(15):4707-11. PubMed ID: 22744734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-molybdenum oxynitride porous material with improved cyclic stability and rate capability for rechargeable lithium ion batteries.
    Zhou D; Wu H; Wei Z; Han BH
    Phys Chem Chem Phys; 2013 Oct; 15(39):16898-906. PubMed ID: 24002680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur-Doped Graphdiyne as a High-Capacity Anode Material for Lithium-Ion Batteries.
    Kong F; Yue Y; Li Q; Ren S
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries.
    Sun D; Yang J; Yan X
    Chem Commun (Camb); 2015 Feb; 51(11):2134-7. PubMed ID: 25553914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage.
    Gu Y; Xu Y; Wang Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):801-6. PubMed ID: 23317533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries.
    Choi BG; Chang SJ; Lee YB; Bae JS; Kim HJ; Huh YS
    Nanoscale; 2012 Sep; 4(19):5924-30. PubMed ID: 22899185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries.
    Zhou X; Yin YX; Wan LJ; Guo YG
    Chem Commun (Camb); 2012 Feb; 48(16):2198-200. PubMed ID: 22252533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries.
    Li B; Cao H; Shao J; Li G; Qu M; Yin G
    Inorg Chem; 2011 Mar; 50(5):1628-32. PubMed ID: 21244033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries.
    Zhan F; Geng B; Guo Y
    Chemistry; 2009 Jun; 15(25):6169-74. PubMed ID: 19437475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries.
    Xu GL; Xu YF; Sun H; Fu F; Zheng XM; Huang L; Li JT; Yang SH; Sun SG
    Chem Commun (Camb); 2012 Sep; 48(68):8502-4. PubMed ID: 22810155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.
    Wang H; Cui LF; Yang Y; Sanchez Casalongue H; Robinson JT; Liang Y; Cui Y; Dai H
    J Am Chem Soc; 2010 Oct; 132(40):13978-80. PubMed ID: 20853844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries.
    Mahmood N; Zhang C; Hou Y
    Small; 2013 Apr; 9(8):1321-8. PubMed ID: 23494938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.