These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 23012351)

  • 1. MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli.
    Renner LD; Weibel DB
    J Biol Chem; 2012 Nov; 287(46):38835-44. PubMed ID: 23012351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential affinities of MinD and MinE to anionic phospholipid influence Min patterning dynamics in vitro.
    Vecchiarelli AG; Li M; Mizuuchi M; Mizuuchi K
    Mol Microbiol; 2014 Aug; 93(3):453-63. PubMed ID: 24930948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phospholipid composition on MinD-membrane interactions in vitro and in vivo.
    Mileykovskaya E; Fishov I; Fu X; Corbin BD; Margolin W; Dowhan W
    J Biol Chem; 2003 Jun; 278(25):22193-8. PubMed ID: 12676941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro.
    Lackner LL; Raskin DM; de Boer PA
    J Bacteriol; 2003 Feb; 185(3):735-49. PubMed ID: 12533449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE.
    Hu Z; Saez C; Lutkenhaus J
    J Bacteriol; 2003 Jan; 185(1):196-203. PubMed ID: 12486056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selection.
    Ma L; King GF; Rothfield L
    Mol Microbiol; 2004 Oct; 54(1):99-108. PubMed ID: 15458408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
    LaBreck CJ; Trebino CE; Ferreira CN; Morrison JJ; DiBiasio EC; Conti J; Camberg JL
    J Biol Chem; 2021; 296():100162. PubMed ID: 33288679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli.
    Hsieh CW; Lin TY; Lai HM; Lin CC; Hsieh TS; Shih YL
    Mol Microbiol; 2010 Jan; 75(2):499-512. PubMed ID: 20025670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide.
    Conti J; Viola MG; Camberg JL
    FEBS Lett; 2015 Jan; 589(2):201-6. PubMed ID: 25497011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological regulation of cell division in E. coli. spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid.
    Hu Z; Lutkenhaus J
    Mol Cell; 2001 Jun; 7(6):1337-43. PubMed ID: 11430835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE.
    Hu Z; Lutkenhaus J
    Mol Microbiol; 1999 Oct; 34(1):82-90. PubMed ID: 10540287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MinC N- and C-Domain Interactions Modulate FtsZ Assembly, Division Site Selection, and MinD-Dependent Oscillation in
    LaBreck CJ; Conti J; Viola MG; Camberg JL
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the MinE site involved in interaction with the MinD division site selection protein of Escherichia coli.
    Ma LY; King G; Rothfield L
    J Bacteriol; 2003 Aug; 185(16):4948-55. PubMed ID: 12897015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE.
    Hu Z; Gogol EP; Lutkenhaus J
    Proc Natl Acad Sci U S A; 2002 May; 99(10):6761-6. PubMed ID: 11983867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The MinD membrane targeting sequence is a transplantable lipid-binding helix.
    Szeto TH; Rowland SL; Habrukowich CL; King GF
    J Biol Chem; 2003 Oct; 278(41):40050-6. PubMed ID: 12882967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of the asymmetric activation of the MinD ATPase by MinE.
    Park KT; Wu W; Lovell S; Lutkenhaus J
    Mol Microbiol; 2012 Jul; 85(2):271-81. PubMed ID: 22651575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE.
    Suefuji K; Valluzzi R; RayChaudhuri D
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16776-81. PubMed ID: 12482939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual effects of MinD-membrane interaction: I. Changes in the membrane properties induced by MinD binding.
    Mazor S; Regev T; Mileykovskaya E; Margolin W; Dowhan W; Fishov I
    Biochim Biophys Acta; 2008 Nov; 1778(11):2496-504. PubMed ID: 18760994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC.
    Wu W; Park KT; Holyoak T; Lutkenhaus J
    Mol Microbiol; 2011 Mar; 79(6):1515-28. PubMed ID: 21231967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Min protein patterns emerge from rapid rebinding and membrane interaction of MinE.
    Loose M; Fischer-Friedrich E; Herold C; Kruse K; Schwille P
    Nat Struct Mol Biol; 2011 May; 18(5):577-83. PubMed ID: 21516096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.