BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23012362)

  • 21. Obligatory role for phospholipase C-gamma(1) in villin-induced epithelial cell migration.
    Wang Y; Tomar A; George SP; Khurana S
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1775-86. PubMed ID: 17229814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of the human c-fes protein tyrosine kinase (p93c-fes) by its src homology 2 domain and major autophosphorylation site (Tyr-713).
    Hjermstad SJ; Peters KL; Briggs SD; Glazer RI; Smithgall TE
    Oncogene; 1993 Aug; 8(8):2283-92. PubMed ID: 7687763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a functional switch for actin severing by cytoskeletal proteins.
    Kumar N; Khurana S
    J Biol Chem; 2004 Jun; 279(24):24915-8. PubMed ID: 15084600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal Structure of the FERM-SH2 Module of Human Jak2.
    McNally R; Toms AV; Eck MJ
    PLoS One; 2016; 11(5):e0156218. PubMed ID: 27227461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity.
    Zhou YJ; Hanson EP; Chen YQ; Magnuson K; Chen M; Swann PG; Wange RL; Changelian PS; O'Shea JJ
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13850-5. PubMed ID: 9391116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pp56Lck mediates TCR zeta-chain binding to the microfilament cytoskeleton.
    Rozdzial MM; Pleiman CM; Cambier JC; Finkel TH
    J Immunol; 1998 Nov; 161(10):5491-9. PubMed ID: 9820525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PLC-gamma1 signaling pathway and villin activation are involved in actin cytoskeleton reorganization induced by Na+/Pi cotransport up-regulation.
    Papakonstanti EA; Emmanouel DS; Gravanis A; Stournaras C
    Mol Med; 2000 Apr; 6(4):303-18. PubMed ID: 10949911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational and functional analysis of the putative SH2 domain in Janus Kinases.
    Kampa D; Burnside J
    Biochem Biophys Res Commun; 2000 Nov; 278(1):175-82. PubMed ID: 11071870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential substrate recognition capabilities of Janus family protein tyrosine kinases within the interleukin 2 receptor (IL2R) system: Jak3 as a potential molecular target for treatment of leukemias with a hyperactive Jak-Stat signaling machinery.
    Witthuhn BA; Williams MD; Kerawalla H; Uckun FM
    Leuk Lymphoma; 1999 Jan; 32(3-4):289-97. PubMed ID: 10037026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of lysophosphatidic acid and phosphatidylinositol 4,5-bisphosphate on actin dynamics by direct association with the actin-binding protein villin.
    Tomar A; George SP; Mathew S; Khurana S
    J Biol Chem; 2009 Dec; 284(51):35278-82. PubMed ID: 19808673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autophosphorylation induces autoactivation and a decrease in the Src homology 2 domain accessibility of the Lyn protein kinase.
    Sotirellis N; Johnson TM; Hibbs ML; Stanley IJ; Stanley E; Dunn AR; Cheng HC
    J Biol Chem; 1995 Dec; 270(50):29773-80. PubMed ID: 8530369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression, purification, characterization and crystallization of non- and phosphorylated states of JAK2 and JAK3 kinase domain.
    Hall T; Emmons TL; Chrencik JE; Gormley JA; Weinberg RA; Leone JW; Hirsch JL; Saabye MJ; Schindler JF; Day JE; Williams JM; Kiefer JR; Lightle SA; Harris MS; Guru S; Fischer HD; Tomasselli AG
    Protein Expr Purif; 2010 Jan; 69(1):54-63. PubMed ID: 19781647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo analysis of functional domains from villin and gelsolin.
    Finidori J; Friederich E; Kwiatkowski DJ; Louvard D
    J Cell Biol; 1992 Mar; 116(5):1145-55. PubMed ID: 1310994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into kinetic mechanism of Janus kinase 3 and its inhibition by tofacitinib.
    Hekmatnejad M; Conwell S; Lok SM; Kutach A; Shaw D; Fang E; Swinney DC
    Arch Biochem Biophys; 2016 Dec; 612():22-34. PubMed ID: 27555492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adapter protein SH2B1beta binds filamin A to regulate prolactin-dependent cytoskeletal reorganization and cell motility.
    Rider L; Diakonova M
    Mol Endocrinol; 2011 Jul; 25(7):1231-43. PubMed ID: 21566085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions.
    Ferrao R; Lupardus PJ
    Front Endocrinol (Lausanne); 2017; 8():71. PubMed ID: 28458652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SH2-B family members differentially regulate JAK family tyrosine kinases.
    O'Brien KB; O'Shea JJ; Carter-Su C
    J Biol Chem; 2002 Mar; 277(10):8673-81. PubMed ID: 11751854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of human Jak3 at tyrosines 904 and 939 positively regulates its activity.
    Cheng H; Ross JA; Frost JA; Kirken RA
    Mol Cell Biol; 2008 Apr; 28(7):2271-82. PubMed ID: 18250158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck.
    Yokoyama N; Miller WT
    J Biol Chem; 2003 Nov; 278(48):47713-23. PubMed ID: 14506255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between two cytoskeleton-associated tyrosine kinases: calcium-dependent tyrosine kinase and focal adhesion tyrosine kinase.
    Li X; Dy RC; Cance WG; Graves LM; Earp HS
    J Biol Chem; 1999 Mar; 274(13):8917-24. PubMed ID: 10085136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.