BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23012364)

  • 41. A role for Bradyrhizobium japonicum ECF16 sigma factor EcfS in the formation of a functional symbiosis with soybean.
    Stockwell SB; Reutimann L; Guerinot ML
    Mol Plant Microbe Interact; 2012 Jan; 25(1):119-28. PubMed ID: 21879796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interspecies complementation of Escherichia coli ccm mutants: CcmE (CycJ) from Bradyrhizobium japonicum acts as a heme chaperone during cytochrome c maturation.
    Schulz H; Thöny-Meyer L
    J Bacteriol; 2000 Dec; 182(23):6831-3. PubMed ID: 11073932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus.
    Thöny-Meyer L; Beck C; Preisig O; Hennecke H
    Mol Microbiol; 1994 Nov; 14(4):705-16. PubMed ID: 7891558
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive assessment of the regulons controlled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum.
    Mesa S; Hauser F; Friberg M; Malaguti E; Fischer HM; Hennecke H
    J Bacteriol; 2008 Oct; 190(20):6568-79. PubMed ID: 18689489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant.
    Minder AC; de Rudder KE; Narberhaus F; Fischer HM; Hennecke H; Geiger O
    Mol Microbiol; 2001 Mar; 39(5):1186-98. PubMed ID: 11251836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The
    Marckmann D; Trasnea PI; Schimpf J; Winterstein C; Andrei A; Schmollinger S; Blaby-Haas CE; Friedrich T; Daldal F; Koch HG
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21166-21175. PubMed ID: 31570589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation.
    Senovilla M; Castro-Rodríguez R; Abreu I; Escudero V; Kryvoruchko I; Udvardi MK; Imperial J; González-Guerrero M
    New Phytol; 2018 Apr; 218(2):696-709. PubMed ID: 29349810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic evidence for a fourth terminal oxidase in Bradyrhizobium japonicum.
    Surpin MA; Moshiri F; Murphy AM; Maier RJ
    Gene; 1994 May; 143(1):73-7. PubMed ID: 8200541
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New target genes controlled by the Bradyrhizobium japonicum two-component regulatory system RegSR.
    Lindemann A; Moser A; Pessi G; Hauser F; Friberg M; Hennecke H; Fischer HM
    J Bacteriol; 2007 Dec; 189(24):8928-43. PubMed ID: 17951393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN).
    Kullik I; Fritsche S; Knobel H; Sanjuan J; Hennecke H; Fischer HM
    J Bacteriol; 1991 Feb; 173(3):1125-38. PubMed ID: 1991712
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration.
    Delgado MJ; Bonnard N; Tresierra-Ayala A; Bedmar EJ; Müller P
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3395-3403. PubMed ID: 14663073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacterial RuBisCO is required for efficient Bradyrhizobium/Aeschynomene symbiosis.
    Gourion B; Delmotte N; Bonaldi K; Nouwen N; Vorholt JA; Giraud E
    PLoS One; 2011; 6(7):e21900. PubMed ID: 21750740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Levels of Periplasmic Nitrate Reductase during Denitrification are Lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens.
    Siqueira AF; Sugawara M; Arashida H; Minamisawa K; Sánchez C
    Microbes Environ; 2020; 35(3):. PubMed ID: 32554940
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of heme and copper ligands in subunit I of the cytochrome bo complex in Escherichia coli.
    Minagawa J; Mogi T; Gennis RB; Anraku Y
    J Biol Chem; 1992 Jan; 267(3):2096-104. PubMed ID: 1309808
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation of several bacterial c-type cytochromes requires a novel membrane-anchored protein that faces the periplasm.
    Ritz D; Bott M; Hennecke H
    Mol Microbiol; 1993 Aug; 9(4):729-40. PubMed ID: 8231805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. What Role Does COA6 Play in Cytochrome
    Maghool S; Ryan MT; Maher MJ
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977416
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization.
    Nienaber A; Huber A; Göttfert M; Hennecke H; Fischer HM
    J Bacteriol; 2000 Mar; 182(6):1472-80. PubMed ID: 10692350
    [TBL] [Abstract][Full Text] [Related]  

  • 58. COA6 Facilitates Cytochrome c Oxidase Biogenesis as Thiol-reductase for Copper Metallochaperones in Mitochondria.
    Pacheu-Grau D; Wasilewski M; Oeljeklaus S; Gibhardt CS; Aich A; Chudenkova M; Dennerlein S; Deckers M; Bogeski I; Warscheid B; Chacinska A; Rehling P
    J Mol Biol; 2020 Mar; 432(7):2067-2079. PubMed ID: 32061935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacterial genes and proteins involved in the biogenesis of c-type cytochromes and terminal oxidases.
    Thöny-Meyer L; Loferer H; Ritz D; Hennecke H
    Biochim Biophys Acta; 1994 Aug; 1187(2):260-3. PubMed ID: 8075119
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition.
    Tottey S; Rondet SA; Borrelly GP; Robinson PJ; Rich PR; Robinson NJ
    J Biol Chem; 2002 Feb; 277(7):5490-7. PubMed ID: 11739376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.