BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23012371)

  • 1. The molecular mechanism of thermostable α-galactosidases AgaA and AgaB explained by x-ray crystallography and mutational studies.
    Merceron R; Foucault M; Haser R; Mattes R; Watzlawick H; Gouet P
    J Biol Chem; 2012 Nov; 287(47):39642-52. PubMed ID: 23012371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and preliminary X-ray diffraction studies of two thermostable alpha-galactosidases from glycoside hydrolase family 36.
    Foucault M; Watzlawick H; Mattes R; Haser R; Gouet P
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Feb; 62(Pt 2):100-3. PubMed ID: 16511274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides.
    Huang Y; Zhang H; Ben P; Duan Y; Lu M; Li Z; Cui Z
    Int J Biol Macromol; 2018 Mar; 108():98-104. PubMed ID: 29183739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-rational approach for converting a GH36 α-glycosidase into an α-transglycosidase.
    Teze D; Daligault F; Ferrières V; Sanejouand YH; Tellier C
    Glycobiology; 2015 Apr; 25(4):420-7. PubMed ID: 25395404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization.
    Fridjonsson O; Watzlawick H; Gehweiler A; Mattes R
    FEMS Microbiol Lett; 1999 Jul; 176(1):147-53. PubMed ID: 10418141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetic element present on megaplasmids allows Enterococcus faecium to use raffinose as carbon source.
    Zhang X; Vrijenhoek JE; Bonten MJ; Willems RJ; van Schaik W
    Environ Microbiol; 2011 Feb; 13(2):518-28. PubMed ID: 20946531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal Structure of α-Galactosidase from
    Chen SC; Wu SP; Chang YY; Hwang TS; Lee TH; Hsu CH
    J Agric Food Chem; 2020 Jun; 68(22):6161-6169. PubMed ID: 32390413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product.
    Chuankhayan P; Lee RH; Guan HH; Lin CC; Chen NC; Huang YC; Yoshimura M; Nakagawa A; Chen CJ
    Acta Crystallogr D Struct Biol; 2023 Feb; 79(Pt 2):154-167. PubMed ID: 36762861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6.
    Lansky S; Salama R; Solomon HV; Feinberg H; Belrhali H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2994-3012. PubMed ID: 25372689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.
    Solomon HV; Tabachnikov O; Lansky S; Salama R; Feinberg H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2433-48. PubMed ID: 26627651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification by saturation mutagenesis of a single residue involved in the alpha-galactosidase AgaB regioselectivity.
    Dion M; Osanjo G; André C; Spangenberg P; Rabiller C; Tellier C
    Glycoconj J; 2001 Jun; 18(6):457-64. PubMed ID: 12084981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours.
    Jam M; Flament D; Allouch J; Potin P; Thion L; Kloareg B; Czjzek M; Helbert W; Michel G; Barbeyron T
    Biochem J; 2005 Feb; 385(Pt 3):703-13. PubMed ID: 15456406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of family GH36 α-galactosidases from Ruminococcus gnavus E1: insights into the metabolism of a plant oligosaccharide by a human gut symbiont.
    Cervera-Tison M; Tailford LE; Fuell C; Bruel L; Sulzenbacher G; Henrissat B; Berrin JG; Fons M; Giardina T; Juge N
    Appl Environ Microbiol; 2012 Nov; 78(21):7720-32. PubMed ID: 22923411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.
    Fredslund F; Hachem MA; Larsen RJ; Sørensen PG; Coutinho PM; Lo Leggio L; Svensson B
    J Mol Biol; 2011 Sep; 412(3):466-80. PubMed ID: 21827767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities.
    Bruel L; Sulzenbacher G; Cervera Tison M; Pujol A; Nicoletti C; Perrier J; Galinier A; Ropartz D; Fons M; Pompeo F; Giardina T
    J Biol Chem; 2011 Nov; 286(47):40814-23. PubMed ID: 21931163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for enzyme bifunctionality - the case of Gan1D from Geobacillus stearothermophilus.
    Lansky S; Zehavi A; Belrhali H; Shoham Y; Shoham G
    FEBS J; 2017 Nov; 284(22):3931-3953. PubMed ID: 28975708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transglycosylations employing recombinant α- and β-galactosidases and novel donor substrates.
    Schröder S; Kröger L; Mattes R; Thiem J
    Carbohydr Res; 2015 Feb; 403():157-66. PubMed ID: 24909380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic properties and substrate inhibition of α-galactosidase from Aspergillus niger.
    Liao J; Okuyama M; Ishihara K; Yamori Y; Iki S; Tagami T; Mori H; Chiba S; Kimura A
    Biosci Biotechnol Biochem; 2016 Sep; 80(9):1747-52. PubMed ID: 26856407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoadaptation of alpha-galactosidase AgaB1 in Thermus thermophilus.
    Fridjonsson O; Watzlawick H; Mattes R
    J Bacteriol; 2002 Jun; 184(12):3385-91. PubMed ID: 12029056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk.
    Jang JM; Yang Y; Wang R; Bao H; Yuan H; Yang J
    Int J Biol Macromol; 2019 Jun; 131():1138-1146. PubMed ID: 30981775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.