These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23012409)

  • 1. Massively parallel measurements of molecular interaction kinetics on a microfluidic platform.
    Geertz M; Shore D; Maerkl SJ
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16540-5. PubMed ID: 23012409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A competitive transcription factor binding mechanism determines the timing of late cell cycle-dependent gene expression.
    Darieva Z; Clancy A; Bulmer R; Williams E; Pic-Taylor A; Morgan BA; Sharrocks AD
    Mol Cell; 2010 Apr; 38(1):29-40. PubMed ID: 20385087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically Induced Trapping of Molecular Interactions and Its Applications.
    Garcia-Cordero JL; Maerkl SJ
    J Lab Autom; 2016 Jun; 21(3):356-67. PubMed ID: 25805850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing direct versus indirect transcription factor-DNA interactions.
    Gordân R; Hartemink AJ; Bulyk ML
    Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle-dependent regulation of Saccharomyces cerevisiae donor preference during mating-type switching by SBF (Swi4/Swi6) and Fkh1.
    Coïc E; Sun K; Wu C; Haber JE
    Mol Cell Biol; 2006 Jul; 26(14):5470-80. PubMed ID: 16809780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast TATA binding protein interaction with DNA: fluorescence determination of oligomeric state, equilibrium binding, on-rate, and dissociation kinetics.
    Perez-Howard GM; Weil PA; Beechem JM
    Biochemistry; 1995 Jun; 34(25):8005-17. PubMed ID: 7794913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. King of the castle: competition between repressors and activators on the Mcm1 platform.
    Leatherwood J; Futcher B
    Mol Cell; 2010 Apr; 38(1):1-2. PubMed ID: 20385083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MITOMI: a microfluidic platform for in vitro characterization of transcription factor-DNA interaction.
    Rockel S; Geertz M; Maerkl SJ
    Methods Mol Biol; 2012; 786():97-114. PubMed ID: 21938622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systems approach to measuring the binding energy landscapes of transcription factors.
    Maerkl SJ; Quake SR
    Science; 2007 Jan; 315(5809):233-7. PubMed ID: 17218526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A yeast transcription assay defines distinct rel and dorsal DNA recognition sequences.
    Kamens J; Brent R
    New Biol; 1991 Oct; 3(10):1005-13. PubMed ID: 1768648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding.
    Le DD; Shimko TC; Aditham AK; Keys AM; Longwell SA; Orenstein Y; Fordyce PM
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3702-E3711. PubMed ID: 29588420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A trans-acting peptide activates the yeast a1 repressor by raising its DNA-binding affinity.
    Stark MR; Escher D; Johnson AD
    EMBO J; 1999 Mar; 18(6):1621-9. PubMed ID: 10075932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meiosis-specific destruction of the Ume6p repressor by the Cdc20-directed APC/C.
    Mallory MJ; Cooper KF; Strich R
    Mol Cell; 2007 Sep; 27(6):951-61. PubMed ID: 17889668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain.
    Du F; Navarro-Garcia F; Xia Z; Tasaki T; Varshavsky A
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14110-5. PubMed ID: 12391316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aym1, a mouse meiotic gene identified by virtue of its ability to activate early meiotic genes in the yeast Saccharomyces cerevisiae.
    Malcov M; Cesarkas K; Stelzer G; Shalom S; Dicken Y; Naor Y; Goldstein RS; Sagee S; Kassir Y; Don J
    Dev Biol; 2004 Dec; 276(1):111-23. PubMed ID: 15531368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc7-Dbf4 is a gene-specific regulator of meiotic transcription in yeast.
    Lo HC; Kunz RC; Chen X; Marullo A; Gygi SP; Hollingsworth NM
    Mol Cell Biol; 2012 Jan; 32(2):541-57. PubMed ID: 22106412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization of the yeast MATalpha2/MCM1/DNA ternary complex: general methods and principles for protein/DNA cocrystallization.
    Tan S; Hunziker Y; Pellegrini L; Richmond TJ
    J Mol Biol; 2000 Apr; 297(4):947-59. PubMed ID: 10736229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitotic Clb cyclins are required to alleviate HIR-mediated repression of the yeast histone genes at the G1/S transition.
    Amin AD; Dimova DK; Ferreira ME; Vishnoi N; Hancock LC; Osley MA; Prochasson P
    Biochim Biophys Acta; 2012 Jan; 1819(1):16-27. PubMed ID: 21978826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.