BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 23012438)

  • 1. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis.
    Vanholme R; Storme V; Vanholme B; Sundin L; Christensen JH; Goeminne G; Halpin C; Rohde A; Morreel K; Boerjan W
    Plant Cell; 2012 Sep; 24(9):3506-29. PubMed ID: 23012438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis.
    Vanholme R; Ralph J; Akiyama T; Lu F; Pazo JR; Kim H; Christensen JH; Van Reusel B; Storme V; De Rycke R; Rohde A; Morreel K; Boerjan W
    Plant J; 2010 Dec; 64(6):885-97. PubMed ID: 20822504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification.
    Sundin L; Vanholme R; Geerinck J; Goeminne G; Höfer R; Kim H; Ralph J; Boerjan W
    Plant Physiol; 2014 Dec; 166(4):1956-71. PubMed ID: 25315601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1.
    Mir Derikvand M; Sierra JB; Ruel K; Pollet B; Do CT; Thévenin J; Buffard D; Jouanin L; Lapierre C
    Planta; 2008 Apr; 227(5):943-56. PubMed ID: 18046574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof.
    Costa MA; Collins RE; Anterola AM; Cochrane FC; Davin LB; Lewis NG
    Phytochemistry; 2003 Nov; 64(6):1097-112. PubMed ID: 14568076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana.
    Eudes A; Pollet B; Sibout R; Do CT; Séguin A; Lapierre C; Jouanin L
    Planta; 2006 Dec; 225(1):23-39. PubMed ID: 16832689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity.
    Jeon HS; Jang E; Kim J; Kim SH; Lee MH; Nam MH; Tobimatsu Y; Park OK
    Autophagy; 2023 Feb; 19(2):597-615. PubMed ID: 35652914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems.
    Berthet S; Demont-Caulet N; Pollet B; Bidzinski P; Cézard L; Le Bris P; Borrega N; Hervé J; Blondet E; Balzergue S; Lapierre C; Jouanin L
    Plant Cell; 2011 Mar; 23(3):1124-37. PubMed ID: 21447792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis.
    Do CT; Pollet B; Thévenin J; Sibout R; Denoue D; Barrière Y; Lapierre C; Jouanin L
    Planta; 2007 Oct; 226(5):1117-29. PubMed ID: 17594112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products.
    Ali MB; McNear DH
    BMC Plant Biol; 2014 Apr; 14():84. PubMed ID: 24690446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the absence of stem-specific β-glucosidases on lignin and monolignols.
    Chapelle A; Morreel K; Vanholme R; Le-Bris P; Morin H; Lapierre C; Boerjan W; Jouanin L; Demont-Caulet N
    Plant Physiol; 2012 Nov; 160(3):1204-17. PubMed ID: 22984124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four Isoforms of Arabidopsis 4-Coumarate:CoA Ligase Have Overlapping yet Distinct Roles in Phenylpropanoid Metabolism.
    Li Y; Kim JI; Pysh L; Chapple C
    Plant Physiol; 2015 Dec; 169(4):2409-21. PubMed ID: 26491147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pinoresinol rescues developmental phenotypes of Arabidopsis phenylpropanoid mutants overexpressing
    Muro-Villanueva F; Pysh LD; Kim H; Bouse T; Ralph J; Luo Z; Cooper BR; Jannasch AS; Zhang Z; Gu C; Chapple C
    Proc Natl Acad Sci U S A; 2023 Aug; 120(31):e2216543120. PubMed ID: 37487096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin biosynthesis genes play critical roles in the adaptation of
    Chun HJ; Baek D; Cho HM; Lee SH; Jin BJ; Yun DJ; Hong YS; Kim MC
    Plant Signal Behav; 2019; 14(8):1625697. PubMed ID: 31156026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism.
    Rohde A; Morreel K; Ralph J; Goeminne G; Hostyn V; De Rycke R; Kushnir S; Van Doorsselaere J; Joseleau JP; Vuylsteke M; Van Driessche G; Van Beeumen J; Messens E; Boerjan W
    Plant Cell; 2004 Oct; 16(10):2749-71. PubMed ID: 15377757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vessel-Specific Reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in Dwarfed
    De Meester B; de Vries L; Özparpucu M; Gierlinger N; Corneillie S; Pallidis A; Goeminne G; Morreel K; De Bruyne M; De Rycke R; Vanholme R; Boerjan W
    Plant Physiol; 2018 Jan; 176(1):611-633. PubMed ID: 29158331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stacking of a low-lignin trait with an increased guaiacyl and 5-hydroxyguaiacyl unit trait leads to additive and synergistic effects on saccharification efficiency in
    de Vries L; Vanholme R; Van Acker R; De Meester B; Sundin L; Boerjan W
    Biotechnol Biofuels; 2018; 11():257. PubMed ID: 30250509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast.
    Nair RB; Xia Q; Kartha CJ; Kurylo E; Hirji RN; Datla R; Selvaraj G
    Plant Physiol; 2002 Sep; 130(1):210-20. PubMed ID: 12226501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications.
    Jourdes M; Cardenas CL; Laskar DD; Moinuddin SG; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1932-56. PubMed ID: 17559892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.