These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23013244)

  • 1. Thermophysical characterization of the seeds of invasive Chinese tallow tree: importance for biofuel production.
    Picou L; Boldor D
    Environ Sci Technol; 2012 Oct; 46(20):11435-42. PubMed ID: 23013244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.
    Barekati-Goudarzi M; Boldor D; Nde DB
    Bioresour Technol; 2016 Feb; 201():97-104. PubMed ID: 26638139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric characterization of the seeds of invasive Chinese tallow tree.
    Fennell LP; Boldor D
    J Microw Power Electromagn Energy; 2013; 47(4):237-50. PubMed ID: 24779226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic modification of wood quality for second-generation biofuel production.
    Lu S; Li L; Zhou G
    GM Crops; 2010; 1(4):230-6. PubMed ID: 21844678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave assisted extraction of biodiesel feedstock from the seeds of invasive chinese tallow tree.
    Boldor D; Kanitkar A; Terigar BG; Leonardi C; Lima M; Breitenbeck GA
    Environ Sci Technol; 2010 May; 44(10):4019-25. PubMed ID: 20429594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Sequencing of the Fruit Transcriptome and Lipid Accumulation in a Non-Seed Tissue of Chinese Tallow, a Potential Biofuel Crop.
    Divi UK; Zhou XR; Wang P; Butlin J; Zhang DM; Liu Q; Vanhercke T; Petrie JR; Talbot M; White RG; Taylor JM; Larkin P; Singh SP
    Plant Cell Physiol; 2016 Jan; 57(1):125-37. PubMed ID: 26589268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The comprehensive characterization of Prosopis juliflora pods as a potential bioenergy feedstock.
    Gayathri G; Uppuluri KB
    Sci Rep; 2022 Nov; 12(1):18586. PubMed ID: 36329067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant genetic engineering to improve biomass characteristics for biofuels.
    Sticklen M
    Curr Opin Biotechnol; 2006 Jun; 17(3):315-9. PubMed ID: 16701991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production.
    Hallac BB; Sannigrahi P; Pu Y; Ray M; Murphy RJ; Ragauskas AJ
    J Agric Food Chem; 2009 Feb; 57(4):1275-81. PubMed ID: 19170631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass.
    Pasangulapati V; Ramachandriya KD; Kumar A; Wilkins MR; Jones CL; Huhnke RL
    Bioresour Technol; 2012 Jun; 114():663-9. PubMed ID: 22520219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees.
    Garcia-Maraver A; SalvachĂșa D; MartĂ­nez MJ; Diaz LF; Zamorano M
    Waste Manag; 2013 Nov; 33(11):2245-9. PubMed ID: 23916844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renewable fuels from algae: an answer to debatable land based fuels.
    Singh A; Nigam PS; Murphy JD
    Bioresour Technol; 2011 Jan; 102(1):10-6. PubMed ID: 20615690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BRIEF-REPORT New set of microsatellites for Chinese tallow tree, Triadica sebifera.
    Zhuang YF; Wang ZF; Wu LF
    Genet Mol Res; 2017 Apr; 16(2):. PubMed ID: 28387880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can biofuels finally take center stage?
    Schubert C
    Nat Biotechnol; 2006 Jul; 24(7):777-84. PubMed ID: 16841058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum.
    Huang W; Gong F; Fan M; Zhai Q; Hong C; Li Q
    Bioresour Technol; 2012 Oct; 121():248-55. PubMed ID: 22858493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical and thermal characterization of nonedible oilseed residual waste as sustainable solid biofuel.
    Doshi P; Srivastava G; Pathak G; Dikshit M
    Waste Manag; 2014 Oct; 34(10):1836-46. PubMed ID: 24462338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.
    Zhu JY; Pan XJ
    Bioresour Technol; 2010 Jul; 101(13):4992-5002. PubMed ID: 19969450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production.
    Ruan Z; Zanotti M; Wang X; Ducey C; Liu Y
    Bioresour Technol; 2012 Apr; 110():198-205. PubMed ID: 22330588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protecting innovation: genomics-based intellectual property for the development of feedstock for second-generation biofuels.
    Harfouche A; Grant K; Selig M; Tsai D; Meilan R
    Recent Pat DNA Gene Seq; 2010 Jun; 4(2):94-105. PubMed ID: 20470242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.