BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23013274)

  • 1. Determinants of substrate specificity and biochemical properties of the sn-glycerol-3-phosphate ATP binding cassette transporter (UgpB-AEC2 ) of Escherichia coli.
    Wuttge S; Bommer M; Jäger F; Martins BM; Jacob S; Licht A; Scheffel F; Dobbek H; Schneider E
    Mol Microbiol; 2012 Nov; 86(4):908-20. PubMed ID: 23013274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter.
    Chandravanshi M; Gogoi P; Kanaujia SP
    Gene; 2016 Nov; 592(2):260-8. PubMed ID: 27395429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli.
    Hekstra D; Tommassen J
    J Bacteriol; 1993 Oct; 175(20):6546-52. PubMed ID: 8407831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of Mycobacterium tuberculosis ATP-binding cassette transporter subunit UgpB reveals specificity for glycerophosphocholine.
    Jiang D; Zhang Q; Zheng Q; Zhou H; Jin J; Zhou W; Bartlam M; Rao Z
    FEBS J; 2014 Jan; 281(1):331-41. PubMed ID: 24299297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A putative helical domain in the MalK subunit of the ATP-binding-cassette transport system for maltose of Salmonella typhimurium (MalFGK2) is crucial for interaction with MalF and MalG. A study using the LacK protein of Agrobacterium radiobacter as a tool.
    Wilken S; Schmees G; Schneider E
    Mol Microbiol; 1996 Nov; 22(4):655-66. PubMed ID: 8951813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of two ugp genes coding for the pho regulon-dependent sn-glycerol-3-phosphate transport system of Escherichia coli.
    Schweizer H; Grussenmeyer T; Boos W
    J Bacteriol; 1982 Jun; 150(3):1164-71. PubMed ID: 6281238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metabolite binding protein moonlights as a bile-responsive chaperone.
    Lee C; Betschinger P; Wu K; Żyła DS; Glockshuber R; Bardwell JC
    EMBO J; 2020 Oct; 39(20):e104231. PubMed ID: 32882062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter.
    Auer M; Kim MJ; Lemieux MJ; Villa A; Song J; Li XD; Wang DN
    Biochemistry; 2001 Jun; 40(22):6628-35. PubMed ID: 11380257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the ugp region containing the genes for the phoB dependent sn-glycerol-3-phosphate transport system of Escherichia coli.
    Schweizer H; Boos W
    Mol Gen Genet; 1984; 197(1):161-8. PubMed ID: 6392822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maltose binding protein (MalE) interacts with periplasmic loops P2 and P1 respectively of the MalFG subunits of the maltose ATP binding cassette transporter (MalFGK(2)) from Escherichia coli/Salmonella during the transport cycle.
    Daus ML; Berendt S; Wuttge S; Schneider E
    Mol Microbiol; 2007 Dec; 66(5):1107-22. PubMed ID: 17961142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding protein-dependent ABC transport system for glycerol 3-phosphate of Escherichia coli.
    Boos W
    Methods Enzymol; 1998; 292():40-51. PubMed ID: 9711545
    [No Abstract]   [Full Text] [Related]  

  • 12. Structural Basis of Glycerophosphodiester Recognition by the
    Fenn JS; Nepravishta R; Guy CS; Harrison J; Angulo J; Cameron AD; Fullam E
    ACS Chem Biol; 2019 Sep; 14(9):1879-1887. PubMed ID: 31433162
    [No Abstract]   [Full Text] [Related]  

  • 13. The pho regulon-dependent Ugp uptake system for glycerol-3-phosphate in Escherichia coli is trans inhibited by Pi.
    Brzoska P; Rimmele M; Brzostek K; Boos W
    J Bacteriol; 1994 Jan; 176(1):15-20. PubMed ID: 8282692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation.
    Lemieux MJ; Huang Y; Wang DN
    Res Microbiol; 2004 Oct; 155(8):623-9. PubMed ID: 15380549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale purification, dissociation and functional reassembly of the maltose ATP-binding cassette transporter (MalFGK(2)) of Salmonella typhimurium.
    Landmesser H; Stein A; Blüschke B; Brinkmann M; Hunke S; Schneider E
    Biochim Biophys Acta; 2002 Sep; 1565(1):64-72. PubMed ID: 12225853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter.
    Alvarez FJ; Orelle C; Huang Y; Bajaj R; Everly RM; Klug CS; Davidson AL
    Mol Microbiol; 2015 Dec; 98(5):878-94. PubMed ID: 26268698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization and ATP-induced dimerization of the isolated ABC-domain of the haemolysin B transporter.
    Zaitseva J; Jenewein S; Wiedenmann A; Benabdelhak H; Holland IB; Schmitt L
    Biochemistry; 2005 Jul; 44(28):9680-90. PubMed ID: 16008353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli.
    Gul N; Poolman B
    Mol Membr Biol; 2013 Mar; 30(2):138-48. PubMed ID: 23249124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of glycerol-2-phosphate via the ugp-encoded transporter in Escherichia coli K-12.
    Yang K; Wang M; Metcalf WW
    J Bacteriol; 2009 Jul; 191(14):4667-70. PubMed ID: 19429609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes of the bacterial type I ATP-binding cassette importer HisQMP2 at distinct steps of the catalytic cycle.
    Heuveling J; Frochaux V; Ziomkowska J; Wawrzinek R; Wessig P; Herrmann A; Schneider E
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):106-16. PubMed ID: 24021237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.