BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23013318)

  • 1. Microbial interactions associated with secondary cucumber fermentation.
    Franco W; Pérez-Díaz IM
    J Appl Microbiol; 2013 Jan; 114(1):161-72. PubMed ID: 23013318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a model system for the study of spoilage associated secondary cucumber fermentation during long-term storage.
    Franco W; Pérez-Díaz IM
    J Food Sci; 2012 Oct; 77(10):M586-92. PubMed ID: 22924596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of selected oxidative yeasts and bacteria in cucumber secondary fermentation associated with spoilage of the fermented fruit.
    Franco W; Pérez-Díaz IM
    Food Microbiol; 2012 Dec; 32(2):338-44. PubMed ID: 22986199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of spoilage-associated secondary cucumber fermentation.
    Franco W; Pérez-Díaz IM; Johanningsmeier SD; McFeeters RF
    Appl Environ Microbiol; 2012 Feb; 78(4):1273-84. PubMed ID: 22179234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.
    Johanningsmeier SD; Franco W; Perez-Diaz I; McFeeters RF
    J Food Sci; 2012 Jul; 77(7):M397-404. PubMed ID: 22757713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations.
    Johanningsmeier SD; McFeeters RF
    Food Microbiol; 2013 Sep; 35(2):129-35. PubMed ID: 23664264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Nonculture-Based Methods.
    Medina E; Pérez-Díaz IM; Breidt F; Hayes J; Franco W; Butz N; Azcarate-Peril MA
    J Food Sci; 2016 Jan; 81(1):M121-9. PubMed ID: 26605993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride.
    McFeeters RF; Pérez-Díaz I
    J Food Sci; 2010 Apr; 75(3):C291-6. PubMed ID: 20492282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival of Escherichia coli O157:H7 in cucumber fermentation brines.
    Breidt F; Caldwell JM
    J Food Sci; 2011 Apr; 76(3):M198-203. PubMed ID: 21535844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning.
    Breidt F; Medina E; Wafa D; Pérez-Díaz I; Franco W; Huang HY; Johanningsmeier SD; Kim JH
    J Food Sci; 2013 Mar; 78(3):M470-6. PubMed ID: 23458751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber.
    Daughtry KV; Johanningsmeier SD; Sanozky-Dawes R; Klaenhammer TR; Barrangou R
    Int J Food Microbiol; 2018 Sep; 280():46-56. PubMed ID: 29778800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts.
    Pérez-Díaz IM; McFeeters RF
    J Food Sci; 2010 May; 75(4):M204-8. PubMed ID: 20546411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the non-lactic acid bacteria microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl.
    Pérez-Díaz IM; Hayes JS; Medina E; Webber AM; Butz N; Dickey AN; Lu Z; Azcarate-Peril MA
    Food Microbiol; 2019 Feb; 77():10-20. PubMed ID: 30297040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Brine Acidification on Fermentation Microbiota, Chemistry, and Texture Quality of Cucumbers Fermented in Calcium or Sodium Chloride Brines.
    McMurtrie EK; Johanningsmeier SD; Breidt F; Price RE
    J Food Sci; 2019 May; 84(5):1129-1137. PubMed ID: 30994935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevention of microbes-induced spoilage in sodium chloride-free cucumber fermentations employing preservatives.
    Pérez-Díaz IM; Medina E; Page CA; Johanningsmeier SD; Daughtry KV; Moeller L
    J Food Sci; 2022 Nov; 87(11):5054-5069. PubMed ID: 36254496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of microbial growth on the redox potential of fermented cucumbers.
    Olsen MJ; Pérez-Díaz IM
    J Food Sci; 2009; 74(4):M149-53. PubMed ID: 19490331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of Leuconostocaceae to CO
    Zhai Y; Pérez-Díaz IM
    Food Microbiol; 2020 Oct; 91():103536. PubMed ID: 32539962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers.
    Johanningsmeier SD; McFeeters RF
    Int J Food Microbiol; 2015 Dec; 215():40-8. PubMed ID: 26325599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Content of xylose, trehalose and l-citrulline in cucumber fermentations and utilization of such compounds by certain lactic acid bacteria.
    Ucar RA; Pérez-Díaz IM; Dean LL
    Food Microbiol; 2020 Oct; 91():103454. PubMed ID: 32539957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation Cover Brine Reformulation for Cucumber Processing with Low Salt to Reduce Bloater Defect.
    Zhai Y; Pérez-Díaz IM
    J Food Sci; 2017 Dec; 82(12):2987-2996. PubMed ID: 29125622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.