BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 23013844)

  • 21. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation.
    Klein S; Sommer A; Distel LV; Neuhuber W; Kryschi C
    Biochem Biophys Res Commun; 2012 Aug; 425(2):393-7. PubMed ID: 22842461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications.
    Tang Z; Wu H; Zhang Y; Li Z; Lin Y
    Anal Chem; 2011 Nov; 83(22):8611-6. PubMed ID: 21910434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The many faces of the octahedral ferritin protein.
    Watt RK
    Biometals; 2011 Jun; 24(3):489-500. PubMed ID: 21267633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron loading into ferritin by an intracellular ferroxidase.
    Reilly CA; Aust SD
    Arch Biochem Biophys; 1998 Nov; 359(1):69-76. PubMed ID: 9799562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loading of iron into recombinant rat liver ferritin heteropolymers by ceruloplasmin.
    Juan SH; Guo JH; Aust SD
    Arch Biochem Biophys; 1997 May; 341(2):280-6. PubMed ID: 9169016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs).
    Chang Y; Meng X; Zhao Y; Li K; Zhao B; Zhu M; Li Y; Chen X; Wang J
    J Colloid Interface Sci; 2011 Nov; 363(1):403-9. PubMed ID: 21821262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ferroxidase center is essential for ferritin iron loading in the presence of phosphate and minimizes side reactions that form Fe(III)-phosphate colloids.
    Hilton RJ; David Andros N; Watt RK
    Biometals; 2012 Apr; 25(2):259-73. PubMed ID: 22012445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of the L-chain in ferritin iron incorporation. Studies of homo and heteropolymers.
    Levi S; Santambrogio P; Cozzi A; Rovida E; Corsi B; Tamborini E; Spada S; Albertini A; Arosio P
    J Mol Biol; 1994 May; 238(5):649-54. PubMed ID: 8182740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response.
    Laskar A; Ghosh M; Khattak SI; Li W; Yuan XM
    Nanomedicine (Lond); 2012 May; 7(5):705-17. PubMed ID: 22500704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicity and biodistribution assessment of curcumin-coated iron oxide nanoparticles: Multidose administration.
    Aboushoushah S; Alshammari W; Darwesh R; Elbaily N
    Life Sci; 2021 Jul; 277():119625. PubMed ID: 34015288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The putative "nucleation site" in human H-chain ferritin is not required for mineralization of the iron core.
    Bou-Abdallah F; Biasiotto G; Arosio P; Chasteen ND
    Biochemistry; 2004 Apr; 43(14):4332-7. PubMed ID: 15065877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models.
    Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW
    Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of interaction of magnetic nanoparticles with breast cancer cells.
    Calero M; Chiappi M; Lazaro-Carrillo A; Rodríguez MJ; Chichón FJ; Crosbie-Staunton K; Prina-Mello A; Volkov Y; Villanueva A; Carrascosa JL
    J Nanobiotechnology; 2015 Feb; 13():16. PubMed ID: 25880445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the toxic effects of iron oxide nanoparticles.
    Soenen SJ; De Cuyper M; De Smedt SC; Braeckmans K
    Methods Enzymol; 2012; 509():195-224. PubMed ID: 22568907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide delivery by core/shell superparamagnetic nanoparticle vehicles with enhanced biocompatibility.
    Zhang XF; Mansouri S; Mbeh DA; Yahia L; Sacher E; Veres T
    Langmuir; 2012 Sep; 28(35):12879-85. PubMed ID: 22892047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the interaction between ferritin and ceruloplasmin.
    Juan SH; Aust SD
    Arch Biochem Biophys; 1998 Jul; 355(1):56-62. PubMed ID: 9647667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulation of the ferroxidase activity of ceruloplasmin during iron loading into ferritin.
    Reilly CA; Aust SD
    Arch Biochem Biophys; 1997 Nov; 347(2):242-8. PubMed ID: 9367531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of ferritin-stimulated microsomal production of reactive oxygen intermediates by nitric oxide.
    Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1997 Apr; 340(1):19-26. PubMed ID: 9126272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting.
    Muthiah M; Park IK; Cho CS
    Biotechnol Adv; 2013 Dec; 31(8):1224-36. PubMed ID: 23528431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation-induced ferritin turnover in microglial cells: role of proteasome.
    Mehlhase J; Sandig G; Pantopoulos K; Grune T
    Free Radic Biol Med; 2005 Jan; 38(2):276-85. PubMed ID: 15607911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.