These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

716 related articles for article (PubMed ID: 23014147)

  • 1. Thermoelectric properties of HfN/ScN metal/semiconductor superlattices: a first-principles study.
    Saha B; Sands TD; Waghmare UV
    J Phys Condens Matter; 2012 Oct; 24(41):415303. PubMed ID: 23014147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric properties of SnSe
    Li G; Ding G; Gao G
    J Phys Condens Matter; 2017 Jan; 29(1):015001. PubMed ID: 27831931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermoelectric power factor of a semiconductor superlattice with nanoparticle inclusions.
    Lung F; Marinescu DC
    J Phys Condens Matter; 2011 Sep; 23(36):365802. PubMed ID: 21857098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: A first principles study.
    Yumnam G; Pandey T; Singh AK
    J Chem Phys; 2015 Dec; 143(23):234704. PubMed ID: 26696067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics.
    Lin KH; Strachan A
    J Chem Phys; 2015 Jul; 143(3):034703. PubMed ID: 26203038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-temperature thermoelectric transport behavior of the Al/γ-Al
    Samanta PN; Leszczynski J
    Phys Chem Chem Phys; 2018 May; 20(21):14513-14524. PubMed ID: 29766155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of a large number of electron pockets near the band edges in type-VIII clathrate Si46 and its physical properties from first principles.
    Norouzzadeh P; Myles CW; Vashaee D
    J Phys Condens Matter; 2013 Nov; 25(47):475502. PubMed ID: 24172765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Acoustic and Optical Phonons on the Anisotropic Heat Conduction in Novel C-Based Superlattices.
    Talwar DN; Becla P
    Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium sulphene: two-dimensional confinement of electrons and phonons giving rise to improved thermoelectric performance.
    Zhang RZ; Wan CL; Wang YF; Koumoto K
    Phys Chem Chem Phys; 2012 Dec; 14(45):15641-4. PubMed ID: 23090033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric performances for both p- and n-type GeSe.
    Fan Q; Yang J; Cao J; Liu C
    R Soc Open Sci; 2021 Jun; 8(6):201980. PubMed ID: 34113450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electronic and chemical structure of the a-B3CO0.5:Hy-to-metal interface from photoemission spectroscopy: implications for Schottky barrier heights.
    Driver MS; Paquette MM; Karki S; Nordell BJ; Caruso AN
    J Phys Condens Matter; 2012 Nov; 24(44):445001. PubMed ID: 22976833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity of Si-Ge quantum dot superlattices.
    Haskins JB; Kınacı A; Cağın T
    Nanotechnology; 2011 Apr; 22(15):155701. PubMed ID: 21389580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the thermoelectric transport properties of graphyne by the first-principles method.
    Wang XM; Mo DC; Lu SS
    J Chem Phys; 2013 May; 138(20):204704. PubMed ID: 23742497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain engineering of polar optical phonon scattering mechanism - an effective way to optimize the power-factor and lattice thermal conductivity of ScN.
    Panneerselvam IR; Kim MH; Baldo C; Wang Y; Sahasranaman M
    Phys Chem Chem Phys; 2021 Oct; 23(40):23288-23302. PubMed ID: 34632991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved thermoelectric power factor in metal-based superlattices.
    Vashaee D; Shakouri A
    Phys Rev Lett; 2004 Mar; 92(10):106103. PubMed ID: 15089220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the electronic and phonon transport properties of a thermoelectric material BiCuSeO: a first-principles study.
    Fan DD; Liu HJ; Cheng L; Zhang J; Jiang PH; Wei J; Liang JH; Shi J
    Phys Chem Chem Phys; 2017 May; 19(20):12913-12920. PubMed ID: 28474043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices.
    Poyser CL; Czerniuk T; Akimov A; Diroll BT; Gaulding EA; Salasyuk AS; Kent AJ; Yakovlev DR; Bayer M; Murray CB
    ACS Nano; 2016 Jan; 10(1):1163-9. PubMed ID: 26696021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-Principles Study of n*AlN/n*ScN Superlattices with High Dielectric Capacity for Energy Storage.
    Zhang WC; Wu H; Sun WF; Zhang ZP
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent phonon heat conduction in superlattices.
    Luckyanova MN; Garg J; Esfarjani K; Jandl A; Bulsara MT; Schmidt AJ; Minnich AJ; Chen S; Dresselhaus MS; Ren Z; Fitzgerald EA; Chen G
    Science; 2012 Nov; 338(6109):936-9. PubMed ID: 23161996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillatory metallic behaviour of carbon nanotube superlattices-an ab initio study.
    Agrawal BK; Pathak A
    Nanotechnology; 2008 Apr; 19(13):135706. PubMed ID: 19636160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.