BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

717 related articles for article (PubMed ID: 23014147)

  • 1. Thermoelectric properties of HfN/ScN metal/semiconductor superlattices: a first-principles study.
    Saha B; Sands TD; Waghmare UV
    J Phys Condens Matter; 2012 Oct; 24(41):415303. PubMed ID: 23014147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric properties of SnSe
    Li G; Ding G; Gao G
    J Phys Condens Matter; 2017 Jan; 29(1):015001. PubMed ID: 27831931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermoelectric power factor of a semiconductor superlattice with nanoparticle inclusions.
    Lung F; Marinescu DC
    J Phys Condens Matter; 2011 Sep; 23(36):365802. PubMed ID: 21857098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: A first principles study.
    Yumnam G; Pandey T; Singh AK
    J Chem Phys; 2015 Dec; 143(23):234704. PubMed ID: 26696067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics.
    Lin KH; Strachan A
    J Chem Phys; 2015 Jul; 143(3):034703. PubMed ID: 26203038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-temperature thermoelectric transport behavior of the Al/γ-Al
    Samanta PN; Leszczynski J
    Phys Chem Chem Phys; 2018 May; 20(21):14513-14524. PubMed ID: 29766155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of a large number of electron pockets near the band edges in type-VIII clathrate Si46 and its physical properties from first principles.
    Norouzzadeh P; Myles CW; Vashaee D
    J Phys Condens Matter; 2013 Nov; 25(47):475502. PubMed ID: 24172765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titanium sulphene: two-dimensional confinement of electrons and phonons giving rise to improved thermoelectric performance.
    Zhang RZ; Wan CL; Wang YF; Koumoto K
    Phys Chem Chem Phys; 2012 Dec; 14(45):15641-4. PubMed ID: 23090033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric performances for both p- and n-type GeSe.
    Fan Q; Yang J; Cao J; Liu C
    R Soc Open Sci; 2021 Jun; 8(6):201980. PubMed ID: 34113450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electronic and chemical structure of the a-B3CO0.5:Hy-to-metal interface from photoemission spectroscopy: implications for Schottky barrier heights.
    Driver MS; Paquette MM; Karki S; Nordell BJ; Caruso AN
    J Phys Condens Matter; 2012 Nov; 24(44):445001. PubMed ID: 22976833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity of Si-Ge quantum dot superlattices.
    Haskins JB; Kınacı A; Cağın T
    Nanotechnology; 2011 Apr; 22(15):155701. PubMed ID: 21389580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the thermoelectric transport properties of graphyne by the first-principles method.
    Wang XM; Mo DC; Lu SS
    J Chem Phys; 2013 May; 138(20):204704. PubMed ID: 23742497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain engineering of polar optical phonon scattering mechanism - an effective way to optimize the power-factor and lattice thermal conductivity of ScN.
    Panneerselvam IR; Kim MH; Baldo C; Wang Y; Sahasranaman M
    Phys Chem Chem Phys; 2021 Oct; 23(40):23288-23302. PubMed ID: 34632991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved thermoelectric power factor in metal-based superlattices.
    Vashaee D; Shakouri A
    Phys Rev Lett; 2004 Mar; 92(10):106103. PubMed ID: 15089220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the electronic and phonon transport properties of a thermoelectric material BiCuSeO: a first-principles study.
    Fan DD; Liu HJ; Cheng L; Zhang J; Jiang PH; Wei J; Liang JH; Shi J
    Phys Chem Chem Phys; 2017 May; 19(20):12913-12920. PubMed ID: 28474043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices.
    Poyser CL; Czerniuk T; Akimov A; Diroll BT; Gaulding EA; Salasyuk AS; Kent AJ; Yakovlev DR; Bayer M; Murray CB
    ACS Nano; 2016 Jan; 10(1):1163-9. PubMed ID: 26696021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Study of n*AlN/n*ScN Superlattices with High Dielectric Capacity for Energy Storage.
    Zhang WC; Wu H; Sun WF; Zhang ZP
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent phonon heat conduction in superlattices.
    Luckyanova MN; Garg J; Esfarjani K; Jandl A; Bulsara MT; Schmidt AJ; Minnich AJ; Chen S; Dresselhaus MS; Ren Z; Fitzgerald EA; Chen G
    Science; 2012 Nov; 338(6109):936-9. PubMed ID: 23161996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory metallic behaviour of carbon nanotube superlattices-an ab initio study.
    Agrawal BK; Pathak A
    Nanotechnology; 2008 Apr; 19(13):135706. PubMed ID: 19636160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal properties of amorphous/crystalline silicon superlattices.
    France-Lanord A; Merabia S; Albaret T; Lacroix D; Termentzidis K
    J Phys Condens Matter; 2014 Sep; 26(35):355801. PubMed ID: 25105883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.