These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

718 related articles for article (PubMed ID: 23014147)

  • 21. Phonon Surface Scattering and Thermal Energy Distribution in Superlattices.
    Kothari K; Maldovan M
    Sci Rep; 2017 Jul; 7(1):5625. PubMed ID: 28717137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First principles study of electronic structure and thermoelectric transport in tin selenide and phase separated tin selenide-copper selenide alloy.
    Das A; Kumar A; Banerji P
    J Phys Condens Matter; 2020 Jun; 32(26):265501. PubMed ID: 32106100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Titanium Trisulfide Monolayer as a Potential Thermoelectric Material: A First-Principles-Based Boltzmann Transport Study.
    Zhang J; Liu X; Wen Y; Shi L; Chen R; Liu H; Shan B
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2509-2515. PubMed ID: 28054481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.
    Chang IY; Kim D; Hyeon-Deuk K
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18321-7. PubMed ID: 27385641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon Dominated Thermal Transport in Metallic Niobium Diselenide from First Principles Calculations.
    Contreras R; Celentano D; Luo T; Liu Z; Morales-Ferreiro JO
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Power Factor and Ultralow Lattice Thermal Conductivity Induced High Thermoelectric Performance of BiCuTeO/BiCuSeO Superlattice.
    Yang X; Sun Z; Ge G; Yang J
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soft phonon modes driven huge difference on lattice thermal conductivity between topological semimetal WC and WN.
    Guo SD; Chen P
    J Chem Phys; 2018 Apr; 148(14):144706. PubMed ID: 29655357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Thermoelectric Performance Originating from the Grooved Bands in the ZrSe
    Zhou Z; Liu H; Fan D; Cao G; Sheng C
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37031-37037. PubMed ID: 30284442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS.
    Zhao LD; He J; Hao S; Wu CI; Hogan TP; Wolverton C; Dravid VP; Kanatzidis MG
    J Am Chem Soc; 2012 Oct; 134(39):16327-36. PubMed ID: 22991921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature dependence of phonon modes, dielectric functions, and interband electronic transitions in Cu2ZnSnS4 semiconductor films.
    Li W; Jiang K; Zhang J; Chen X; Hu Z; Chen S; Sun L; Chu J
    Phys Chem Chem Phys; 2012 Jul; 14(28):9936-41. PubMed ID: 22710652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoupling interrelated parameters for designing high performance thermoelectric materials.
    Xiao C; Li Z; Li K; Huang P; Xie Y
    Acc Chem Res; 2014 Apr; 47(4):1287-95. PubMed ID: 24517646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thin-film thermoelectric devices with high room-temperature figures of merit.
    Venkatasubramanian R; Siivola E; Colpitts T; O'Quinn B
    Nature; 2001 Oct; 413(6856):597-602. PubMed ID: 11595940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y; Jayasekera T; Calzolari A; Kim KW; Nardelli MB
    J Phys Condens Matter; 2010 Sep; 22(37):372202. PubMed ID: 21403189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First-principles prediction of structural stability and thermoelectric properties of SrGaSnH.
    Haque E; Rahaman M
    RSC Adv; 2021 Jan; 11(6):3304-3314. PubMed ID: 35424316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bilayer MSe
    Yan P; Gao GY; Ding GQ; Qin D
    RSC Adv; 2019 Apr; 9(22):12394-12403. PubMed ID: 35515840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical, optical, thermoelectric power, and dielectrical properties of organic semiconductor poly(1,12-bis(carbazolyl) dodecane) film.
    Yakuphanoglu F; Liu H; Xu J
    J Phys Chem B; 2007 Jul; 111(26):7535-40. PubMed ID: 17559258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-Plane Thermal Conductivity of Radial and Planar Si/SiO
    Li G; Yarali M; Cocemasov A; Baunack S; Nika DL; Fomin VM; Singh S; Gemming T; Zhu F; Mavrokefalos A; Schmidt OG
    ACS Nano; 2017 Aug; 11(8):8215-8222. PubMed ID: 28771320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High thermopower and ultra low thermal conductivity in Cd-based Zintl phase compounds.
    Pandey T; Singh AK
    Phys Chem Chem Phys; 2015 Jul; 17(26):16917-26. PubMed ID: 26060054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silicon nanowires as efficient thermoelectric materials.
    Boukai AI; Bunimovich Y; Tahir-Kheli J; Yu JK; Goddard WA; Heath JR
    Nature; 2008 Jan; 451(7175):168-71. PubMed ID: 18185583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.