These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23014622)

  • 1. Characterizing the Coherence of Broadband Sources using Optical Phase Space Contours.
    Wax A; Bali S; Alphonse GA; Thomas JE
    J Biomed Opt; 1999 Oct; 4(4):482-9. PubMed ID: 23014622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon.
    Lu Y; Cao V; Liao M; Li W; Tang M; Li A; Smowton P; Seeds A; Liu H; Chen S
    Opt Lett; 2020 Oct; 45(19):5468-5471. PubMed ID: 33001927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical phase-space distributions for low-coherence light.
    Wax A; Bali S; Thomas JE
    Opt Lett; 1999 Sep; 24(17):1188-90. PubMed ID: 18073979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source.
    Ko T; Adler D; Fujimoto J; Mamedov D; Prokhorov V; Shidlovski V; Yakubovich S
    Opt Express; 2004 May; 12(10):2112-9. PubMed ID: 19475046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution-improved dual-beam and standard optical coherence tomography: a comparison.
    Baumgartner A; Hitzenberger CK; Ergun E; Stur M; Sattmann H; Drexler W; Fercher AF
    Graefes Arch Clin Exp Ophthalmol; 2000 May; 238(5):385-92. PubMed ID: 10901469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and Analysis of Relative Intensity Noise in Broadband Optical Sources for Optical Coherence Tomography.
    Shin S; Sharma U; Tu H; Jung W; Boppart SA
    IEEE Photonics Technol Lett; 2010; 22(14):1057-1059. PubMed ID: 22090794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chip-based frequency comb sources for optical coherence tomography.
    Ji X; Yao X; Klenner A; Gan Y; Gaeta AL; Hendon CP; Lipson M
    Opt Express; 2019 Jul; 27(14):19896-19905. PubMed ID: 31503744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2.2 microm axial resolution optical coherence tomography based on a 400 nm-bandwidth superluminescent diode.
    Chan MC; Su YS; Lin CF; Sun CK
    Scanning; 2006; 28(1):11-4. PubMed ID: 16502620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterodyne measurement of Wigner distributions for classical optical fields.
    Lee KF; Reil F; Bali S; Wax A; Thomas JE
    Opt Lett; 1999 Oct; 24(19):1370-2. PubMed ID: 18079807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion effects in partial coherence interferometry: implications for intraocular ranging.
    Hitzenberger CK; Baumgartner A; Drexler W; Fercher AF
    J Biomed Opt; 1999 Jan; 4(1):144-51. PubMed ID: 23015179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal and resolution enhancements in dual beam optical coherence tomography of the human eye.
    Baumgartner A; Hitzenberger CK; Sattmann H; Drexler W; Fercher AF
    J Biomed Opt; 1998 Jan; 3(1):45-54. PubMed ID: 23015005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources.
    Bouma BE; Nelson LE; Tearney GJ; Jones DJ; Brezinski ME; Fujimoto JG
    J Biomed Opt; 1998 Jan; 3(1):76-9. PubMed ID: 23015008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband Quantum Dot Superluminescent Diode with Simultaneous Three-State Emission.
    Jiang C; Wang H; Chen H; Dai H; Zhang Z; Li X; Yao Z
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback.
    Blazek M; Elsässer W; Hopkinson M; Resneau P; Krakowski M; Rossetti M; Bardella P; Gioannini M; Montrosset I
    Opt Express; 2009 Aug; 17(16):13365-72. PubMed ID: 19654741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-domain processing of optical coherence tomography images.
    Yung KM; Lee SL; Schmitt JM
    J Biomed Opt; 1999 Jan; 4(1):125-36. PubMed ID: 23015177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using light scattering to measure the temporal coherence of optical sources.
    Pereira A; Ferreira F; Belsley M
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):93-102. PubMed ID: 15669619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise characterization of supercontinuum sources for low-coherence interferometry applications.
    Brown WJ; Kim S; Wax A
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):2703-10. PubMed ID: 25606759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh resolution optical coherence tomography using a superluminescent light source.
    Kowalevicz A; Ko T; Hartl I; Fujimoto J; Pollnau M; Salathé R
    Opt Express; 2002 Apr; 10(7):349-53. PubMed ID: 19436366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high-resolution SD-OCM imaging with a compact polarization-aligned 840 nm broadband combined-SLED source.
    Haindl R; Duelk M; Gloor S; Dahdah J; Ojeda J; Sturtzel C; Deng S; Joyce Deloria A; Li Q; Liu M; Distel M; Drexler W; Leitgeb R
    Biomed Opt Express; 2020 Jun; 11(6):3395-3406. PubMed ID: 32637262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication.
    Alatawi AA; Holguin-Lerma JA; Kang CH; Shen C; Subedi RC; Albadri AM; Alyamani AY; Ng TK; Ooi BS
    Opt Express; 2018 Oct; 26(20):26355-26364. PubMed ID: 30469724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.