These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23014622)

  • 21. Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr(3+):LiCAF laser.
    Wagenblast P; Ko T; Fujimoto J; Kaertner F; Morgner U
    Opt Express; 2004 Jul; 12(14):3257-63. PubMed ID: 19483850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth.
    Shen C; Lee C; Ng TK; Nakamura S; Speck JS; DenBaars SP; Alyamani AY; El-Desouki MM; Ooi BS
    Opt Express; 2016 Sep; 24(18):20281-6. PubMed ID: 27607634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterizing the resolvability of real superluminescent diode sources for application to optical coherence tomography using a low coherence interferometry model.
    Jansz PV; Richardson S; Wild G; Hinckley S
    J Biomed Opt; 2014 Aug; 19(8):085003. PubMed ID: 25096403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bimodal-sized quantum dots for broad spectral bandwidth emitter.
    Zhou Y; Zhang J; Ning Y; Zeng Y; Zhang J; Zhang X; Qin L; Wang L
    Opt Express; 2015 Dec; 23(25):32230-7. PubMed ID: 26699013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incoherent excess noise spectrally encodes broadband light sources.
    Kho AM; Zhang T; Zhu J; Merkle CW; Srinivasan VJ
    Light Sci Appl; 2020; 9():172. PubMed ID: 33082941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gaussian-Schell analysis of the transverse spatial properties of high-harmonic beams.
    Lloyd DT; O'Keeffe K; Anderson PN; Hooker SM
    Sci Rep; 2016 Jul; 6():30504. PubMed ID: 27465654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical coherence tomography speckle reduction by a partially spatially coherent source.
    Kim J; Miller DT; Kim E; Oh S; Oh J; Milner TE
    J Biomed Opt; 2005; 10(6):064034. PubMed ID: 16409099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Propagation characteristics of Bessel beams generated by continuous, incoherent light sources.
    Altıngöz C; Yalızay B; Akturk S
    J Opt Soc Am A Opt Image Sci Vis; 2015 Aug; 32(8):1567-75. PubMed ID: 26367302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-range common-path spectral domain optical coherence tomography.
    Wang C; Zhang Q; Wang Y; Zhang X; Zhang L
    Opt Express; 2019 Apr; 27(9):12483-12490. PubMed ID: 31052787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changing the speed of optical coherence in free space.
    Yessenov M; Abouraddy AF
    Opt Lett; 2019 Nov; 44(21):5125-5128. PubMed ID: 31674947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of spatially broadband twin beams for quantum imaging.
    Boyer V; Marino AM; Lett PD
    Phys Rev Lett; 2008 Apr; 100(14):143601. PubMed ID: 18518031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography.
    Wang Y; Tomov I; Nelson JS; Chen Z; Lim H; Wise F
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1492-9. PubMed ID: 16134843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrathin fiber probes with extended depth of focus for optical coherence tomography.
    Lorenser D; Yang X; Sampson DD
    Opt Lett; 2012 May; 37(10):1616-8. PubMed ID: 22627514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polarisation structuring of broadband light.
    Mitchell KJ; Radwell N; Franke-Arnold S; Padgett MJ; Phillips DB
    Opt Express; 2017 Oct; 25(21):25079-25089. PubMed ID: 29041179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband spatiotemporal Gaussian Schell-model pulse trains.
    Dutta R; Korhonen M; Friberg AT; Genty G; Turunen J
    J Opt Soc Am A Opt Image Sci Vis; 2014 Mar; 31(3):637-43. PubMed ID: 24690663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch.
    Xu J; Zhang C; Xu J; Wong KK; Tsia KK
    Opt Lett; 2014 Feb; 39(3):622-5. PubMed ID: 24487881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth.
    Yi L; Sun L; Ding W
    J Biomed Opt; 2017 Oct; 22(10):1-8. PubMed ID: 29076306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography.
    Sainter AW; King TA; Dickinson MR
    J Biomed Opt; 2004; 9(1):193-9. PubMed ID: 14715073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.