These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23014630)

  • 1. integIRTy: a method to identify genes altered in cancer by accounting for multiple mechanisms of regulation using item response theory.
    Tong P; Coombes KR
    Bioinformatics; 2012 Nov; 28(22):2861-9. PubMed ID: 23014630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint analysis of expression profiles from multiple cancers improves the identification of microRNA-gene interactions.
    Chen X; Slack FJ; Zhao H
    Bioinformatics; 2013 Sep; 29(17):2137-45. PubMed ID: 23772050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIBER: systematic identification of bimodally expressed genes using RNAseq data.
    Tong P; Chen Y; Su X; Coombes KR
    Bioinformatics; 2013 Mar; 29(5):605-13. PubMed ID: 23303507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DINGO: differential network analysis in genomics.
    Ha MJ; Baladandayuthapani V; Do KA
    Bioinformatics; 2015 Nov; 31(21):3413-20. PubMed ID: 26148744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM.
    Vaske CJ; Benz SC; Sanborn JZ; Earl D; Szeto C; Zhu J; Haussler D; Stuart JM
    Bioinformatics; 2010 Jun; 26(12):i237-45. PubMed ID: 20529912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNAmet: an R package for integrating copy number, methylation and expression data.
    Louhimo R; Hautaniemi S
    Bioinformatics; 2011 Mar; 27(6):887-8. PubMed ID: 21228048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised multiple kernel learning for heterogeneous data integration.
    Mariette J; Villa-Vialaneix N
    Bioinformatics; 2018 Mar; 34(6):1009-1015. PubMed ID: 29077792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient methods for identifying mutated driver pathways in cancer.
    Zhao J; Zhang S; Wu LY; Zhang XS
    Bioinformatics; 2012 Nov; 28(22):2940-7. PubMed ID: 22982574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.
    Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K
    PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data.
    Wang W; Baladandayuthapani V; Morris JS; Broom BM; Manyam G; Do KA
    Bioinformatics; 2013 Jan; 29(2):149-59. PubMed ID: 23142963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritizing cancer-related microRNAs by integrating microRNA and mRNA datasets.
    Jin D; Lee H
    Sci Rep; 2016 Oct; 6():35350. PubMed ID: 27734929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis.
    Kim S; Lin CW; Tseng GC
    Bioinformatics; 2016 Jul; 32(13):1966-73. PubMed ID: 27153719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bimodality index: a criterion for discovering and ranking bimodal signatures from cancer gene expression profiling data.
    Wang J; Wen S; Symmans WF; Pusztai L; Coombes KR
    Cancer Inform; 2009 Aug; 7():199-216. PubMed ID: 19718451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules.
    Zhang S; Li Q; Liu J; Zhou XJ
    Bioinformatics; 2011 Jul; 27(13):i401-9. PubMed ID: 21685098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of RNA-Seq data with heterogeneous microarray data for breast cancer profiling.
    Castillo D; Gálvez JM; Herrera LJ; Román BS; Rojas F; Rojas I
    BMC Bioinformatics; 2017 Nov; 18(1):506. PubMed ID: 29157215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing.
    Sun Z; Asmann YW; Kalari KR; Bot B; Eckel-Passow JE; Baker TR; Carr JM; Khrebtukova I; Luo S; Zhang L; Schroth GP; Perez EA; Thompson EA
    PLoS One; 2011 Feb; 6(2):e17490. PubMed ID: 21364760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new correlation clustering method for cancer mutation analysis.
    Hou JP; Emad A; Puleo GJ; Ma J; Milenkovic O
    Bioinformatics; 2016 Dec; 32(24):3717-3728. PubMed ID: 27540270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
    Ma S; Jiang T; Jiang R
    Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.