These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23014687)

  • 21. Phase-sensitive swept-source interferometry for absolute ranging with application to measurements of group refractive index and thickness.
    Moore ED; McLeod RR
    Opt Express; 2011 Apr; 19(9):8117-26. PubMed ID: 21643062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Refractive-index measurement and inverse correction using optical coherence tomography.
    Stritzel J; Rahlves M; Roth B
    Opt Lett; 2015 Dec; 40(23):5558-61. PubMed ID: 26625050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of central corneal thickness using optical low-coherence reflectometry and spectral-domain optical coherence tomography.
    López-Miguel A; Correa-Pérez ME; Miranda-Anta S; Iglesias-Cortiñas D; Coco-Martín MB; Maldonado MJ
    J Cataract Refract Surg; 2012 May; 38(5):758-64. PubMed ID: 22436868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of the refractive index of human teeth by optical coherence tomography.
    Meng Z; Yao XS; Yao H; Liang Y; Liu T; Li Y; Wang G; Lan S
    J Biomed Opt; 2009; 14(3):034010. PubMed ID: 19566303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic measurement of absorptive thin films by spectral-domain optical coherence tomography.
    Ho TS; Yeh P; Tsai CC; Hsu KY; Huang SL
    Opt Express; 2014 Mar; 22(5):5675-83. PubMed ID: 24663908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical constants of aluminum films in the extreme ultraviolet interval of 82-77 nm.
    Larruquert JI; Méndez JA; Aznárez JA
    Appl Opt; 1996 Oct; 35(28):5692-7. PubMed ID: 21127577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Treasure of the Past VII: Measurement of the Thickness and Refractive Index of Very Thin Films and the Optical Properties of Surfaces by Ellipsometry.
    McCrackin FL; Passaglia E; Stromberg RR; Steinberg HL
    J Res Natl Inst Stand Technol; 2001; 106(3):589-603. PubMed ID: 27500037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical low coherence reflectometry for noncontact measurements of flap thickness during laser in situ keratomileusis.
    Genth U; Mrochen M; Wälti R; Salaheldine MM; Seiler T
    Ophthalmology; 2002 May; 109(5):973-8. PubMed ID: 11986106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurements of holographic properties of bacteriorhodopsin films.
    Downie JD; Smithey DT
    Appl Opt; 1996 Oct; 35(29):5780-9. PubMed ID: 21127589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors.
    Hirsch M; Majchrowicz D; Wierzba P; Weber M; Bechelany M; Jędrzejewska-Szczerska M
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28134855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variation of corneal refractive index with hydration.
    Kim YL; Walsh JT; Goldstick TK; Glucksberg MR
    Phys Med Biol; 2004 Mar; 49(5):859-68. PubMed ID: 15070208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Needle-based refractive index measurement using low-coherence interferometry.
    Zysk AM; Adie SG; Armstrong JJ; Leigh MS; Paduch A; Sampson DD; Nguyen FT; Boppart SA
    Opt Lett; 2007 Feb; 32(4):385-7. PubMed ID: 17356661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid and precise in vivo measurement of human corneal thickness with optical low-coherence reflectometry in normal human eyes.
    Wa Lti R; Bo Hnke M; Gianotti R; Bonvin P; Ballif J; Salathe RP
    J Biomed Opt; 1998 Jul; 3(3):253-8. PubMed ID: 23015078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method.
    Fan X; Koshikiya Y; Ito F
    Opt Lett; 2007 Nov; 32(22):3227-9. PubMed ID: 18026262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical time-domain reflectometry of bent plastic optical fibers.
    Sugita T
    Appl Opt; 2001 Feb; 40(6):897-905. PubMed ID: 18357070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pulsed plasma polymerized maleic anhydride films in humid air and in aqueous solutions studied with optical waveguide spectroscopy.
    Chu LQ; Förch R; Knoll W
    Langmuir; 2006 Mar; 22(6):2822-6. PubMed ID: 16519489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-range measurement of Rayleigh scatter signature beyond laser coherence length based on coherent optical frequency domain reflectometry.
    Ohno S; Iida D; Toge K; Manabe T
    Opt Express; 2016 Aug; 24(17):19651-60. PubMed ID: 27557243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of two optical biometers in intraocular lens power calculation.
    Hui S; Yi L
    Indian J Ophthalmol; 2014 Sep; 62(9):931-4. PubMed ID: 25370395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source.
    Qin J; Zhang L; Xie W; Cheng R; Liu Z; Wei W; Dong Y
    Opt Express; 2019 Jul; 27(14):19359-19368. PubMed ID: 31503696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of central corneal thickness using OCT, ultrasound, optical low coherence reflectometry and Scheimpflug pachymetry.
    Beutelspacher SC; Serbecic N; Scheuerle AF
    Eur J Ophthalmol; 2011; 21(2):132-7. PubMed ID: 20872361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.