BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23014986)

  • 1. Physical origin of hydrophobicity studied in terms of cold denaturation of proteins: comparison between water and simple fluids.
    Yoshidome T; Kinoshita M
    Phys Chem Chem Phys; 2012 Nov; 14(42):14554-66. PubMed ID: 23014986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: comparison between hard-sphere solvent and water.
    Oshima H; Kinoshita M
    J Chem Phys; 2015 Apr; 142(14):145103. PubMed ID: 25877596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of mean force between hydrophobic solutes in the Jagla model of water and implications for cold denaturation of proteins.
    Maiti M; Weiner S; Buldyrev SV; Stanley HE; Sastry S
    J Chem Phys; 2012 Jan; 136(4):044512. PubMed ID: 22299896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular origin of the hydrophobic effect: analysis using the angle-dependent integral equation theory.
    Kinoshita M
    J Chem Phys; 2008 Jan; 128(2):024507. PubMed ID: 18205459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crucial importance of translational entropy of water in pressure denaturation of proteins.
    Harano Y; Kinoshita M
    J Chem Phys; 2006 Jul; 125(2):24910. PubMed ID: 16848614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism of pressure denaturation of proteins.
    Harano Y; Yoshidome T; Kinoshita M
    J Chem Phys; 2008 Oct; 129(14):145103. PubMed ID: 19045168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical analysis on characteristics of protein structures induced by cold denaturation.
    Oshima H; Yoshidome T; Amano K; Kinoshita M
    J Chem Phys; 2009 Nov; 131(20):205102. PubMed ID: 19947708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sugars on the thermal stability of a protein.
    Oshima H; Kinoshita M
    J Chem Phys; 2013 Jun; 138(24):245101. PubMed ID: 23822280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical analysis on hydration thermodynamics of proteins.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2006 Jul; 125(2):24911. PubMed ID: 16848615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobicity at low temperatures and cold denaturation of a protein.
    Yoshidome T; Kinoshita M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):030905. PubMed ID: 19391894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the molecular origin of cold denaturation of globular proteins.
    Graziano G
    Phys Chem Chem Phys; 2010 Nov; 12(42):14245-52. PubMed ID: 20882232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct characterization of hydrophobic hydration during cold and pressure denaturation.
    Das P; Matysiak S
    J Phys Chem B; 2012 May; 116(18):5342-8. PubMed ID: 22512347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent reorganization contribution to the transfer thermodynamics of small nonpolar molecules.
    Lee B
    Biopolymers; 1991 Jul; 31(8):993-1008. PubMed ID: 1782360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein.
    Murakami S; Hayashi T; Kinoshita M
    J Chem Phys; 2017 Feb; 146(5):055102. PubMed ID: 28178788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force.
    Shimizu S; Chan HS
    Proteins; 2002 Dec; 49(4):560-6. PubMed ID: 12402364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic elements of protein cold denaturation.
    Lopez CF; Darst RK; Rossky PJ
    J Phys Chem B; 2008 May; 112(19):5961-7. PubMed ID: 18181599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in thermodynamic quantities upon contact of two solutes in solvent under isochoric and isobaric conditions.
    Kinoshita M; Harano Y; Akiyama R
    J Chem Phys; 2006 Dec; 125(24):244504. PubMed ID: 17199352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integral equation study of hydrophobic interaction: a comparison between the simple point charge model for water and a Lennard-Jones model for solvent.
    Sumi T; Sekino H
    J Chem Phys; 2007 Apr; 126(14):144508. PubMed ID: 17444724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular origin of the negative heat capacity of hydrophilic hydration.
    Kinoshita M; Yoshidome T
    J Chem Phys; 2009 Apr; 130(14):144705. PubMed ID: 19368463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure effects on structures formed by entropically driven self-assembly: illustration for denaturation of proteins.
    Yoshidome T; Harano Y; Kinoshita M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011912. PubMed ID: 19257074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.