These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23015001)

  • 1. Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry.
    Podoleanu AG; Seeger M; Dobre GM; Webb DJ; Jackson DA; Fitzke FW
    J Biomed Opt; 1998 Jan; 3(1):12-20. PubMed ID: 23015001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope.
    Podoleanu AG; Jackson DA
    Appl Opt; 1999 Apr; 38(10):2116-27. PubMed ID: 18319772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging the retina by en face optical coherence tomography.
    van Velthoven ME; Verbraak FD; Yannuzzi LA; Rosen RB; Podoleanu AG; de Smet MD
    Retina; 2006 Feb; 26(2):129-36. PubMed ID: 16467666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three dimensional OCT images from retina and skin.
    Podoleanu A; Rogers J; Jackson D; Dunne S
    Opt Express; 2000 Oct; 7(9):292-8. PubMed ID: 19407878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic focus in optical coherence tomography for retinal imaging.
    Pircher M; Götzinger E; Hitzenberger CK
    J Biomed Opt; 2006; 11(5):054013. PubMed ID: 17092162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions.
    Pan Y; Farkas DL
    J Biomed Opt; 1998 Oct; 3(4):446-55. PubMed ID: 23015145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography.
    Jiao S; Knighton R; Huang X; Gregori G; Puliafito C
    Opt Express; 2005 Jan; 13(2):444-52. PubMed ID: 19488371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of retinal thickness from three-dimensional images obtained from C scan images from the optical coherence tomography ophthalmoscope.
    Mizota A; Sakuma T; Miyauchi O; Honda M; Tanaka M
    Clin Exp Ophthalmol; 2007 Apr; 35(3):220-4. PubMed ID: 17430507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. En-face coherence imaging using galvanometer scanner modulation.
    Podoleanu AG; Dobre GM; Jackson DA
    Opt Lett; 1998 Feb; 23(3):147-9. PubMed ID: 18084441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining SLO and OCT technology.
    Podoleanu AG
    Bull Soc Belge Ophtalmol; 2006; (302):133-51. PubMed ID: 17265795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources.
    Bouma BE; Nelson LE; Tearney GJ; Jones DJ; Brezinski ME; Fujimoto JG
    J Biomed Opt; 1998 Jan; 3(1):76-9. PubMed ID: 23015008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colocalization error between the scanning laser ophthalmoscope infrared reflectance and optical coherence tomography images of the heidelberg spectralis.
    Vongkulsiri S; Suzuki M; Spaide RF
    Retina; 2015 Jun; 35(6):1211-5. PubMed ID: 25748282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography.
    Pircher M; Zawadzki RJ; Evans JW; Werner JS; Hitzenberger CK
    Opt Lett; 2008 Jan; 33(1):22-4. PubMed ID: 18157245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal and resolution enhancements in dual beam optical coherence tomography of the human eye.
    Baumgartner A; Hitzenberger CK; Sattmann H; Drexler W; Fercher AF
    J Biomed Opt; 1998 Jan; 3(1):45-54. PubMed ID: 23015005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional imaging of the human retina by high-speed optical coherence tomography.
    Hitzenberger C; Trost P; Lo PW; Zhou Q
    Opt Express; 2003 Oct; 11(21):2753-61. PubMed ID: 19471390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-domain processing of optical coherence tomography images.
    Yung KM; Lee SL; Schmitt JM
    J Biomed Opt; 1999 Jan; 4(1):125-36. PubMed ID: 23015177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binarization of enhanced depth imaging optical coherence tomographic images of an eye with Wyburn-Mason syndrome: a case report.
    Iwata A; Mitamura Y; Niki M; Semba K; Egawa M; Katome T; Sonoda S; Sakamoto T
    BMC Ophthalmol; 2015 Mar; 15():19. PubMed ID: 25884956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RETINAL CAVERNOUS HEMANGIOMA DOCUMENTED BY SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY AND CONFOCAL SCANNING LASER OPHTHALMOSCOPE RETRO-MODE IMAGING.
    Ito H; Takahashi A; Ishiko S; Nagaoka T; Yoshida A
    Retin Cases Brief Rep; 2016; 10(4):373-6. PubMed ID: 26674276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion effects in partial coherence interferometry: implications for intraocular ranging.
    Hitzenberger CK; Baumgartner A; Drexler W; Fercher AF
    J Biomed Opt; 1999 Jan; 4(1):144-51. PubMed ID: 23015179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.