These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of viscous drag on multiple receptor-ligand bonds rupture force. Gupta VK Colloids Surf B Biointerfaces; 2012 Dec; 100():229-39. PubMed ID: 22766301 [TBL] [Abstract][Full Text] [Related]
4. Effects of cellular viscoelasticity in lifetime extraction of single receptor-ligand bonds. Gupta VK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062701. PubMed ID: 26172730 [TBL] [Abstract][Full Text] [Related]
5. Effects of cellular viscoelasticity in multiple-bond force spectroscopy. Gupta VK Biomech Model Mechanobiol; 2015 Jun; 14(3):615-32. PubMed ID: 25326875 [TBL] [Abstract][Full Text] [Related]
6. Rupture of single receptor-ligand bonds: a new insight into probability distribution function. Gupta VK Colloids Surf B Biointerfaces; 2013 Jan; 101():501-9. PubMed ID: 23010061 [TBL] [Abstract][Full Text] [Related]
8. Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling. Pawar P; Jadhav S; Eggleton CD; Konstantopoulos K Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1439-50. PubMed ID: 18660437 [TBL] [Abstract][Full Text] [Related]
9. Multi-scale simulation of L-selectin-PSGL-1-dependent homotypic leukocyte binding and rupture. Gupta VK; Sraj IA; Konstantopoulos K; Eggleton CD Biomech Model Mechanobiol; 2010 Oct; 9(5):613-27. PubMed ID: 20229248 [TBL] [Abstract][Full Text] [Related]
10. Measuring receptor/ligand interaction at the single-bond level: experimental and interpretative issues. Zhu C; Long M; Chesla SE; Bongrand P Ann Biomed Eng; 2002 Mar; 30(3):305-14. PubMed ID: 12051616 [TBL] [Abstract][Full Text] [Related]
12. Effect of cell and microvillus mechanics on the transmission of applied loads to single bonds in dynamic force spectroscopy. Gupta VK; Eggleton CD Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011912. PubMed ID: 21867218 [TBL] [Abstract][Full Text] [Related]
13. Quantitative modeling assesses the contribution of bond strengthening, rebinding and force sharing to the avidity of biomolecule interactions. Lo Schiavo V; Robert P; Limozin L; Bongrand P PLoS One; 2012; 7(9):e44070. PubMed ID: 23024747 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of cellular adhesion reinforcement by multiple bond force spectroscopy in alveolar epithelial cells. Nguyen NM; Angely C; Andre Dias S; Planus E; Filoche M; Pelle G; Louis B; Isabey D Biol Cell; 2017 Jul; 109(7):255-272. PubMed ID: 28543271 [TBL] [Abstract][Full Text] [Related]
15. Catch Bonds at T Cell Interfaces: Impact of Surface Reorganization and Membrane Fluctuations. Pullen RH; Abel SM Biophys J; 2017 Jul; 113(1):120-131. PubMed ID: 28700910 [TBL] [Abstract][Full Text] [Related]
17. Model energy landscapes and the force-induced dissociation of ligand-receptor bonds. Strunz T; Oroszlan K; Schumakovitch I; Güntherodt H; Hegner M Biophys J; 2000 Sep; 79(3):1206-12. PubMed ID: 10968985 [TBL] [Abstract][Full Text] [Related]
18. Effect of viscoelasticity on the analysis of single-molecule force spectroscopy on live cells. Gupta VK; Neeves KB; Eggleton CD Biophys J; 2012 Jul; 103(1):137-45. PubMed ID: 22828340 [TBL] [Abstract][Full Text] [Related]
19. Ligand-specific binding forces of LFA-1 and Mac-1 in neutrophil adhesion and crawling. Li N; Yang H; Wang M; Lü S; Zhang Y; Long M Mol Biol Cell; 2018 Feb; 29(4):408-418. PubMed ID: 29282280 [TBL] [Abstract][Full Text] [Related]