BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23015285)

  • 1. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Wongputtaraksa T; Ratanavaraporn J; Pichyangkura R; Damrongsakkul S
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2307-15. PubMed ID: 23015285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenic differentiation of bone-marrow-derived stem cells cultured with mixed gelatin and chitooligosaccharide scaffolds.
    Ratanavaraporn J; Damrongsakkul S; Kanokpanont S; Yamamoto M; Tabata Y
    J Biomater Sci Polym Ed; 2011; 22(8):1083-98. PubMed ID: 20615314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.
    Sinlapabodin S; Amornsudthiwat P; Damrongsakkul S; Kanokpanont S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():960-70. PubMed ID: 26478392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of human cancellous bone using Thai silk fibroin and gelatin for enhanced osteoconductive potential.
    Vorrapakdee R; Kanokpanont S; Ratanavaraporn J; Waikakul S; Charoenlap C; Damrongsakkul S
    J Mater Sci Mater Med; 2013 Mar; 24(3):735-44. PubMed ID: 23224853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds.
    Ai C; Liu L; Goh JC
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112088. PubMed ID: 33947578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering.
    Luetchford KA; Chaudhuri JB; De Bank PA
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110116. PubMed ID: 31753329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of in vitro attachment, proliferation and osteogenic differentiation of rat bone-marrow-derived stem cells using different molecular mass chitosans and their blends with gelatin.
    Ratanavaraporn J; Kanokpanont S; Tabata Y; Damrongsakkul S
    J Biomater Sci Polym Ed; 2010; 21(8-9):979-96. PubMed ID: 20507703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends.
    Bhardwaj N; Kundu SC
    Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat.
    Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X
    Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonmineralized and Mineralized Silk Fibroin/Gelatin Hybrid Scaffolds: Chacterization and Cytocompatibility In Vitro for Bone-Tissue Engineering.
    Meng X; Gong K; Sun C; Liu D; Du P; Xu D
    J Craniofac Surg; 2020; 31(2):416-419. PubMed ID: 31764552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering.
    Sun K; Li H; Li R; Nian Z; Li D; Xu C
    Eur J Orthop Surg Traumatol; 2015 Feb; 25(2):243-9. PubMed ID: 25118870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration.
    Wu J; Cao L; Liu Y; Zheng A; Jiao D; Zeng D; Wang X; Kaplan DL; Jiang X
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8878-8895. PubMed ID: 30777748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced osteogenic potential of human mesenchymal stem cells on electrospun nanofibrous scaffolds prepared from eri-tasar silk fibroin.
    Panda NN; Biswas A; Pramanik K; Jonnalagadda S
    J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):971-82. PubMed ID: 25176408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: a biocompatibility analysis.
    Li Y; Liu Z; Tang Y; Fan Q; Feng W; Luo C; Dai G; Ge Z; Zhang J; Zou G; Liu Y; Hu N; Huang W
    Acta Biochim Biophys Sin (Shanghai); 2020 Jun; 52(6):590-602. PubMed ID: 32393968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells.
    Li DW; Lei X; He FL; He J; Liu YL; Ye YJ; Deng X; Duan E; Yin DC
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):584-597. PubMed ID: 28802849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.