These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 23015429)

  • 1. Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields.
    Todorovic A; de Lange FP
    J Neurosci; 2012 Sep; 32(39):13389-95. PubMed ID: 23015429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study.
    Todorovic A; van Ede F; Maris E; de Lange FP
    J Neurosci; 2011 Jun; 31(25):9118-23. PubMed ID: 21697363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attentional Enhancement of Auditory Mismatch Responses: a DCM/MEG Study.
    Auksztulewicz R; Friston K
    Cereb Cortex; 2015 Nov; 25(11):4273-83. PubMed ID: 25596591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Event-related brain potential correlates of human auditory sensory memory-trace formation.
    Haenschel C; Vernon DJ; Dwivedi P; Gruzelier JH; Baldeweg T
    J Neurosci; 2005 Nov; 25(45):10494-501. PubMed ID: 16280587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study.
    Recasens M; Leung S; Grimm S; Nowak R; Escera C
    Neuroimage; 2015 Mar; 108():75-86. PubMed ID: 25528656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding of nested levels of acoustic regularity in hierarchically organized areas of the human auditory cortex.
    Recasens M; Grimm S; Wollbrink A; Pantev C; Escera C
    Hum Brain Mapp; 2014 Nov; 35(11):5701-16. PubMed ID: 24996147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The posterior auditory field is the chief generator of prediction error signals in the auditory cortex.
    Parras GG; Casado-Román L; Schröger E; Malmierca MS
    Neuroimage; 2021 Nov; 242():118446. PubMed ID: 34352393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictable tones elicit stimulus-specific suppression of evoked activity in auditory cortex.
    Han B; Mostert P; de Lange FP
    Neuroimage; 2019 Oct; 200():242-249. PubMed ID: 31229656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-related potentials reveal modelling of auditory repetition in the brain.
    Cooper RJ; Atkinson RJ; Clark RA; Michie PT
    Int J Psychophysiol; 2013 Apr; 88(1):74-81. PubMed ID: 23454030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory imagery mismatch negativity elicited in musicians.
    Yumoto M; Matsuda M; Itoh K; Uno A; Karino S; Saitoh O; Kaneko Y; Yatomi Y; Kaga K
    Neuroreport; 2005 Aug; 16(11):1175-8. PubMed ID: 16012343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing.
    Mittag M; Takegata R; Winkler I
    J Neurosci; 2016 Sep; 36(37):9572-9. PubMed ID: 27629709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory magnetic response to clicks in children and adults: its components, hemispheric lateralization and repetition suppression effect.
    Orekhova EV; Butorina AV; Tsetlin MM; Novikova SI; Sokolov PA; Elam M; Stroganova TA
    Brain Topogr; 2013 Jul; 26(3):410-27. PubMed ID: 23104186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity.
    Farley BJ; Quirk MC; Doherty JJ; Christian EP
    J Neurosci; 2010 Dec; 30(49):16475-84. PubMed ID: 21147987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latency of evoked neuromagnetic M100 reflects perceptual and acoustic stimulus attributes.
    Roberts TP; Ferrari P; Poeppel D
    Neuroreport; 1998 Oct; 9(14):3265-9. PubMed ID: 9831462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repetition of complex frequency-modulated sweeps enhances neuromagnetic responses in the human auditory cortex.
    Altmann CF; Klein C; Heinemann LV; Wibral M; Gaese BH; Kaiser J
    Hear Res; 2011 Dec; 282(1-2):216-24. PubMed ID: 21839158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-dependent minimisation of prediction errors involves temporal-frontal activation.
    Hsu YF; Xu W; Parviainen T; Hämäläinen JA
    Neuroimage; 2020 Feb; 207():116355. PubMed ID: 31730922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the human auditory system treats repetition amongst change.
    Horváth J; Winkler I
    Neurosci Lett; 2004 Sep; 368(2):157-61. PubMed ID: 15351440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascade and no-repetition rules are comparable controls for the auditory frequency mismatch negativity in oddball tasks.
    Wiens S; Szychowska M; Eklund R; van Berlekom E
    Psychophysiology; 2019 Jan; 56(1):e13280. PubMed ID: 30246255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between "what" and "when" in the auditory system: temporal predictability enhances repetition suppression.
    Costa-Faidella J; Baldeweg T; Grimm S; Escera C
    J Neurosci; 2011 Dec; 31(50):18590-7. PubMed ID: 22171057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of stimulus properties, complexity, and contingency on the stability and variability of ongoing and evoked activity in human auditory cortex.
    Ioannides AA; Taylor JG; Liu LC; Gross J; Müller-Gärtner HW
    Neuroimage; 1998 Aug; 8(2):149-62. PubMed ID: 9740758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.