These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics. Venkatramaiah N; Kumar S; Patil S Chem Commun (Camb); 2012 May; 48(41):5007-9. PubMed ID: 22510751 [TBL] [Abstract][Full Text] [Related]
3. Inverted opal fluorescent film chemosensor for the detection of explosive nitroaromatic vapors through fluorescence resonance energy transfer. Fang Q; Geng J; Liu B; Gao D; Li F; Wang Z; Guan G; Zhang Z Chemistry; 2009 Nov; 15(43):11507-14. PubMed ID: 19810058 [TBL] [Abstract][Full Text] [Related]
4. Phenothiazine-based oligomers as novel fluorescence probes for detecting vapor-phase nitro compounds. Zhang X; Qiu X; Lu R; Zhou H; Xue P; Liu X Talanta; 2010 Oct; 82(5):1943-9. PubMed ID: 20875600 [TBL] [Abstract][Full Text] [Related]
5. Fluorescent film sensors based on SAMs of pyrene derivatives for detecting nitroaromatics in aqueous solutions. Zhang S; Ding L; Lü F; Liu T; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():31-7. PubMed ID: 22750335 [TBL] [Abstract][Full Text] [Related]
6. Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors. Venkatramaiah N; Firmino AD; Almeida Paz FA; Tomé JP Chem Commun (Camb); 2014 Sep; 50(68):9683-6. PubMed ID: 25017665 [TBL] [Abstract][Full Text] [Related]
7. CH3-π interaction of explosives with cavity of a TPE macrocycle: the key cause for highly selective detection of TNT. Feng HT; Wang JH; Zheng YS ACS Appl Mater Interfaces; 2014 Nov; 6(22):20067-74. PubMed ID: 25319016 [TBL] [Abstract][Full Text] [Related]
8. Iptycene-based fluorescent sensors for nitroaromatics and TNT. Anzenbacher P; Mosca L; Palacios MA; Zyryanov GV; Koutnik P Chemistry; 2012 Oct; 18(40):12712-8. PubMed ID: 22930534 [TBL] [Abstract][Full Text] [Related]
9. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Gao D; Wang Z; Liu B; Ni L; Wu M; Zhang Z Anal Chem; 2008 Nov; 80(22):8545-53. PubMed ID: 18847285 [TBL] [Abstract][Full Text] [Related]
10. Attogram sensing of trinitrotoluene with a self-assembled molecular gelator. Kartha KK; Babu SS; Srinivasan S; Ajayaghosh A J Am Chem Soc; 2012 Mar; 134(10):4834-41. PubMed ID: 22352376 [TBL] [Abstract][Full Text] [Related]
11. Fluorescent Amorphous Distyrylnaphthalene-Based Polymers: Synthesis, Characterization and Thin-Film Nanomolar Sensing of Nitroaromatics in Water. Garay RO; Schvval AB; Almassio MF; Del Rosso PG; Romagnoli MJ; Montani RS Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961291 [TBL] [Abstract][Full Text] [Related]
12. π-Electron rich small molecule sensors for the recognition of nitroaromatics. Shanmugaraju S; Mukherjee PS Chem Commun (Camb); 2015 Nov; 51(89):16014-32. PubMed ID: 26463400 [TBL] [Abstract][Full Text] [Related]
13. Tetraphenylethene-Based Conjugated Fluoranthene: A Potential Fluorescent Probe for Detection of Nitroaromatic Compounds. Chandrasekaran Y; Venkatramaiah N; Patil S Chemistry; 2016 Apr; 22(15):5288-94. PubMed ID: 26929030 [TBL] [Abstract][Full Text] [Related]
14. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. Malik AH; Hussain S; Kalita A; Iyer PK ACS Appl Mater Interfaces; 2015 Dec; 7(48):26968-76. PubMed ID: 26580229 [TBL] [Abstract][Full Text] [Related]
15. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters. Zhang JR; Yue YY; Luo HQ; Li NB Analyst; 2016 Feb; 141(3):1091-7. PubMed ID: 26661456 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation. Ma Y; Huang S; Wang L Talanta; 2013 Nov; 116():535-40. PubMed ID: 24148441 [TBL] [Abstract][Full Text] [Related]
17. Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer. Long Y; Chen H; Wang H; Peng Z; Yang Y; Zhang G; Li N; Liu F; Pei J Anal Chim Acta; 2012 Sep; 744():82-91. PubMed ID: 22935378 [TBL] [Abstract][Full Text] [Related]
19. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution. Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223 [TBL] [Abstract][Full Text] [Related]
20. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Tu R; Liu B; Wang Z; Gao D; Wang F; Fang Q; Zhang Z Anal Chem; 2008 May; 80(9):3458-65. PubMed ID: 18336012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]