These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23015627)

  • 1. Vampire squid: detritivores in the oxygen minimum zone.
    Hoving HJ; Robison BH
    Proc Biol Sci; 2012 Nov; 279(1747):4559-67. PubMed ID: 23015627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda).
    Golikov AV; Ceia FR; Sabirov RM; Ablett JD; Gleadall IG; Gudmundsson G; Hoving HJ; Judkins H; Pálsson J; Reid AL; Rosas-Luis R; Shea EK; Schwarz R; Xavier JC
    Sci Rep; 2019 Dec; 9(1):19099. PubMed ID: 31836823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastic in the inferno: Microplastic contamination in deep-sea cephalopods (Vampyroteuthis infernalis and Abralia veranyi) from the southwestern Atlantic.
    Ferreira GVB; Justino AKS; Eduardo LN; Lenoble V; Fauvelle V; Schmidt N; Junior TV; Frédou T; Lucena-Frédou F
    Mar Pollut Bull; 2022 Jan; 174():113309. PubMed ID: 35090293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology of retractile filaments of vampire squid.
    Young RE
    Science; 1967 Jun; 156(3782):1633-4. PubMed ID: 6025124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First in situ observations of the deep-sea squid Grimalditeuthis bonplandi reveal unique use of tentacles.
    Hoving HJ; Zeidberg LD; Benfield MC; Bush SL; Robison BH; Vecchione M
    Proc Biol Sci; 2013 Oct; 280(1769):20131463. PubMed ID: 23986106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fossil evidence for vampire squid inhabiting oxygen-depleted ocean zones since at least the Oligocene.
    Košťák M; Schlögl J; Fuchs D; Holcová K; Hudáčková N; Culka A; Fözy I; Tomašových A; Milovský R; Šurka J; Mazuch M
    Commun Biol; 2021 Feb; 4(1):216. PubMed ID: 33603225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miles down for lunch: deep-sea
    Golikov AV; Stauffer JB; Schindler SV; Taylor J; Boehringer L; Purser A; Sabirov RM; Hoving HJ
    Proc Biol Sci; 2023 Jun; 290(2001):20230640. PubMed ID: 37357857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spermatozoa of the deep-sea cephalopod Vampyroteuthis infernalis Chun: ultrastructure and possible phylogenetic significance.
    Healy JM
    Philos Trans R Soc Lond B Biol Sci; 1989 Jun; 323(1219):589-600. PubMed ID: 2570428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial genome structure and evolution in the living fossil vampire squid, Vampyroteuthis infernalis, and extant cephalopods.
    Yokobori S; Lindsay DJ; Yoshida M; Tsuchiya K; Yamagishi A; Maruyama T; Oshima T
    Mol Phylogenet Evol; 2007 Aug; 44(2):898-910. PubMed ID: 17596970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis.
    Robison BH; Reisenbichler KR; Hunt JC; Haddock SH
    Biol Bull; 2003 Oct; 205(2):102-9. PubMed ID: 14583508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The giant deep-sea octopus Haliphron atlanticus forages on gelatinous fauna.
    Hoving HJ; Haddock SH
    Sci Rep; 2017 Mar; 7():44952. PubMed ID: 28344325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sucker formation in a bigfin reef squid: Comparison between arms and tentacles.
    Kimbara R; Kohtsuka H; Abe S; Oguchi K; Miura T
    J Morphol; 2022 Feb; 283(2):149-163. PubMed ID: 34860433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flight of the vampire: ontogenetic gait-transition in vampyroteuthis infernalis (Cephalopoda: vampyromorpha).
    Seibel BA; Thuesen EV; Childress JJ
    J Exp Biol; 1998 Aug; 201 (Pt 16)():2413-24. PubMed ID: 9679103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and flexible: the cephalopod repertoire.
    Boyle P
    Biologist (London); 2000 Sep; 47(4):171-5. PubMed ID: 11153114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decline in Pelagic Cephalopod Metabolism With Habitat Depth Reflects Differences in Locomotory Efficiency.
    Seibel BA; Thuesen EV; Childress JJ; Gorodezky LA
    Biol Bull; 1997 Apr; 192(2):262-278. PubMed ID: 28581868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep pelagic food web structure as revealed by
    Choy CA; Haddock SHD; Robison BH
    Proc Biol Sci; 2017 Dec; 284(1868):. PubMed ID: 29212727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predatory flying squids are detritivores during their early planktonic life.
    Fernández-Álvarez FÁ; Machordom A; García-Jiménez R; Salinas-Zavala CA; Villanueva R
    Sci Rep; 2018 Feb; 8(1):3440. PubMed ID: 29467371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ROV observations reveal infection dynamics of gill parasites in midwater cephalopods.
    Stenvers VI; Sherlock RE; Reisenbichler KR; Robison BH
    Sci Rep; 2022 May; 12(1):8282. PubMed ID: 35585085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid.
    Cherel Y; Ridoux V; Spitz J; Richard P
    Biol Lett; 2009 Jun; 5(3):364-7. PubMed ID: 19324634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple observations of Bigfin Squid (Magnapinna sp.) in the Great Australian Bight reveal distribution patterns, morphological characteristics, and rarely seen behaviour.
    Osterhage D; MacIntosh H; Althaus F; Ross A
    PLoS One; 2020; 15(11):e0241066. PubMed ID: 33175888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.