These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 23016284)
1. Attraction of the gypsy moth to volatile organic compounds (VOCs) of damaged Dahurian larch. Li J; Valimaki S; Shi J; Zong S; Luo Y; Heliovaara K Z Naturforsch C J Biosci; 2012; 67(7-8):437-44. PubMed ID: 23016284 [TBL] [Abstract][Full Text] [Related]
2. Pheromone-trapping the nun moth, Lymantria monacha (Lepidoptera: Lymantriidae) in Inner Mongolia, China. Wang P; Chen GF; Zhang JS; Xue Q; Zhang JH; Chen C; Zhang QH Insect Sci; 2017 Aug; 24(4):631-639. PubMed ID: 27122095 [TBL] [Abstract][Full Text] [Related]
3. Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. Clavijo McCormick A; Irmisch S; Reinecke A; Boeckler GA; Veit D; Reichelt M; Hansson BS; Gershenzon J; Köllner TG; Unsicker SB Plant Cell Environ; 2014 Aug; 37(8):1909-23. PubMed ID: 24471487 [TBL] [Abstract][Full Text] [Related]
4. Antennal responses of the two host races of the larch bud moth, Zeiraphera diniana, to larch and cembran pine volatiles. Syed Z; Guerin PM; Baltensweiler W J Chem Ecol; 2003 Jul; 29(7):1691-708. PubMed ID: 12921446 [TBL] [Abstract][Full Text] [Related]
5. Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Staudt M; Lhoutellier L Tree Physiol; 2007 Oct; 27(10):1433-40. PubMed ID: 17669734 [TBL] [Abstract][Full Text] [Related]
6. Pheromone-binding proteins in the Asian gypsy moth females, Lymantria dispar, recognizing the sex pheromone and plant volatiles. Yu Y; Zhou P; Zhang J; Zheng C; Zhang J; Chen N Arch Insect Biochem Physiol; 2018 Sep; 99(1):e21477. PubMed ID: 29926517 [TBL] [Abstract][Full Text] [Related]
7. State-Dependent Plasticity in Response to Host-Plant Volatiles in a Long-Lived Moth, Caloptilia fraxinella (Lepidoptera: Gracillariidae). Lemmen-Lechelt JK; Wist TJ; Evenden ML J Chem Ecol; 2018 Mar; 44(3):276-287. PubMed ID: 29396790 [TBL] [Abstract][Full Text] [Related]
8. Gypsy moth (Lepidoptera: Lymantriidae) flight behavior and phenology based on field-deployed automated pheromone-baited traps. Tobin PC; Klein KT; Leonard DS Environ Entomol; 2009 Dec; 38(6):1555-62. PubMed ID: 20021749 [TBL] [Abstract][Full Text] [Related]
9. Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana. von Arx M; Schmidt-Büsser D; Guerin PM J Insect Physiol; 2011 Oct; 57(10):1323-31. PubMed ID: 21729701 [TBL] [Abstract][Full Text] [Related]
10. Sex pheromone components of Indian gypsy moth, Lymantria obfuscata. Gries R; Schaefer PW; Hahn R; Khaskin G; Ramaseshiah G; Singh B; Hehar GK; Gries G J Chem Ecol; 2007 Sep; 33(9):1774-86. PubMed ID: 17641931 [TBL] [Abstract][Full Text] [Related]
12. The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. McCormick AC; Boeckler GA; Köllner TG; Gershenzon J; Unsicker SB BMC Plant Biol; 2014 Nov; 14():304. PubMed ID: 25429804 [TBL] [Abstract][Full Text] [Related]
13. Beetle feeding induces a different volatile emission pattern from black poplar foliage than caterpillar herbivory. Unsicker SB; Gershenzon J; Köllner TG Plant Signal Behav; 2015; 10(3):e987522. PubMed ID: 25831045 [TBL] [Abstract][Full Text] [Related]
14. Gypsy moth genome provides insights into flight capability and virus-host interactions. Zhang J; Cong Q; Rex EA; Hallwachs W; Janzen DH; Grishin NV; Gammon DB Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1669-1678. PubMed ID: 30642971 [TBL] [Abstract][Full Text] [Related]
15. Monitoring grape berry moth (Paralobesia viteana: Lepidoptera) in commercial vineyards using a host plant based synthetic lure. Loeb GM; Cha DH; Hesler SP; Linn CE; Zhang A; Teal PE; Roelofs WL Environ Entomol; 2011 Dec; 40(6):1511-22. PubMed ID: 22217768 [TBL] [Abstract][Full Text] [Related]
16. The improved resistance against gypsy moth in Larix olgensis seedlings exposed to Cd stress association with elemental and chemical defenses. Jiang D; Wang GR; Yan SC Pest Manag Sci; 2020 May; 76(5):1713-1721. PubMed ID: 31758658 [TBL] [Abstract][Full Text] [Related]
17. Agonists and antagonists of antennal responses of gypsy moth (Lymantria dispar) to the pheromone (+)-disparlure and other odorants. Plettner E; Gries R J Agric Food Chem; 2010 Mar; 58(6):3708-19. PubMed ID: 20192223 [TBL] [Abstract][Full Text] [Related]
18. Field Attraction of Carob Moth to Host Plants and Conspecific Females. Hosseini SA; Goldansaz SH; Menken SBJ; van Wijk M; Roessingh P; Groot AT J Econ Entomol; 2017 Oct; 110(5):2076-2083. PubMed ID: 28961988 [TBL] [Abstract][Full Text] [Related]
19. [Food energy expenditure by the moth Lymantria dispar L. (Lepidoptera, Lymantriidae) at different stages of ontogenesis]. Vshivkova TA Izv Akad Nauk Ser Biol; 2003; (5):575-81. PubMed ID: 14735789 [TBL] [Abstract][Full Text] [Related]
20. (7R,8S)-cis-7,8-epoxy-2-methyloctadec-17-ene: a novel trace component from the sex pheromone gland of gypsy moth, Lymantria dispar. Gries R; Khaskin G; Schaefer PW; Hahn R; Gotoh T; Gries G J Chem Ecol; 2005 Jan; 31(1):49-62. PubMed ID: 15839479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]