These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23016323)

  • 1. [The study of transpiration influence on plant infrared radiation character].
    Ling J; Zhang SQ; Pan JL; Lian CC; Yang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jul; 32(7):1775-9. PubMed ID: 23016323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.
    Paudel I; Naor A; Gal Y; Cohen S
    Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermography to explore plant-environment interactions.
    Costa JM; Grant OM; Chaves MM
    J Exp Bot; 2013 Oct; 64(13):3937-49. PubMed ID: 23599272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.
    Song X; Simonin KA; Loucos KE; Barbour MM
    Plant Cell Environ; 2015 Dec; 38(12):2618-28. PubMed ID: 25993893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.
    Maes WH; Steppe K
    J Exp Bot; 2012 Aug; 63(13):4671-712. PubMed ID: 22922637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating stomatal conductance with thermal imagery.
    Leinonen I; Grant OM; Tagliavia CP; Chaves MM; Jones HG
    Plant Cell Environ; 2006 Aug; 29(8):1508-18. PubMed ID: 16898014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine.
    Jones HG; Stoll M; Santos T; de Sousa C; Chaves MM; Grant OM
    J Exp Bot; 2002 Nov; 53(378):2249-60. PubMed ID: 12379792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.
    Simonin KA; Roddy AB; Link P; Apodaca R; Tu KP; Hu J; Dawson TE; Barbour MM
    Plant Cell Environ; 2013 Dec; 36(12):2190-206. PubMed ID: 23647101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Design and Preparation of Plant Bionic Materials Based on Optical and Infrared Features Simulation].
    Jiang XJ; Lu XL; Pan JL; Zhang SQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1835-9. PubMed ID: 26717735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transpiration rate measurement using miniature temperature/humidity sensors.
    Sasaki S; Amano T
    Anal Sci; 2010; 26(7):827-9. PubMed ID: 20631447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the importance of within-canopy spatial temperature variation on transpiration predictions.
    Bauerle WL; Bowden JD; Wang GG; Shahba MA
    J Exp Bot; 2009; 60(13):3665-76. PubMed ID: 19561047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transpiration of urban trees and its cooling effect in a high latitude city.
    Konarska J; Uddling J; Holmer B; Lutz M; Lindberg F; Pleijel H; Thorsson S
    Int J Biometeorol; 2016 Jan; 60(1):159-72. PubMed ID: 26048702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Plant transpiration in a maize/soybean intercropping system measured with heat balance method].
    Gao Y; Duan AW; Qiu XQ; Zhang JP; Sun JS; Wang HZ
    Ying Yong Sheng Tai Xue Bao; 2010 May; 21(5):1283-8. PubMed ID: 20707114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions.
    Oerke EC; Steiner U; Dehne HW; Lindenthal M
    J Exp Bot; 2006; 57(9):2121-32. PubMed ID: 16714311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.).
    Kim SH; Lieth JH
    Ann Bot; 2003 Jun; 91(7):771-81. PubMed ID: 12730065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus koraiensis].
    Huo H; Wang CK
    Ying Yong Sheng Tai Xue Bao; 2007 Jun; 18(6):1181-6. PubMed ID: 17763713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Narrow safety margin in the phyllosphere during thermal extremes.
    Pincebourde S; Casas J
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5588-5596. PubMed ID: 30782803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf water maintains daytime transpiration in young Cryptomeria japonica trees.
    Himeno S; Azuma W; Gyokusen K; Ishii HR
    Tree Physiol; 2017 Oct; 37(10):1394-1403. PubMed ID: 28575486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of leaf size, orientation, and arrangement on temperature and transpiration in three high-elevation, large-leafed herbs.
    Geller GN; Smith WK
    Oecologia; 1982 Jan; 53(2):227-234. PubMed ID: 28311114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought.
    Coupel-Ledru A; Lebon É; Christophe A; Doligez A; Cabrera-Bosquet L; Péchier P; Hamard P; This P; Simonneau T
    J Exp Bot; 2014 Nov; 65(21):6205-18. PubMed ID: 25381432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.