These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 23016571)
1. Partial oligomerization of pyolysin induced by a disulfide-tethered mutant. Pokrajac L; Baik C; Harris JR; Sarraf NS; Palmer M Biochem Cell Biol; 2012 Dec; 90(6):709-17. PubMed ID: 23016571 [TBL] [Abstract][Full Text] [Related]
2. Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin. Pokrajac L; Harris JR; Sarraf N; Palmer M Biochem Cell Biol; 2013 Apr; 91(2):59-66. PubMed ID: 23527633 [TBL] [Abstract][Full Text] [Related]
3. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins. Heuck AP; Moe PC; Johnson BB Subcell Biochem; 2010; 51():551-77. PubMed ID: 20213558 [TBL] [Abstract][Full Text] [Related]
4. Replacing the 238th aspartic acid with an arginine impaired the oligomerization activity and inflammation-inducing property of pyolysin. Zhang W; Wang H; Wang B; Zhang Y; Hu Y; Ma B; Wang J Virulence; 2018; 9(1):1112-1125. PubMed ID: 30067143 [TBL] [Abstract][Full Text] [Related]
5. Tethered bilayer membranes as a complementary tool for functional and structural studies: The pyolysin case. Preta G; Jankunec M; Heinrich F; Griffin S; Sheldon IM; Valincius G Biochim Biophys Acta; 2016 Sep; 1858(9):2070-2080. PubMed ID: 27211243 [TBL] [Abstract][Full Text] [Related]
6. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. Dowd KJ; Farrand AJ; Tweten RK PLoS Pathog; 2012; 8(7):e1002787. PubMed ID: 22792065 [TBL] [Abstract][Full Text] [Related]
7. Disulphide bond restrains the C-terminal region of thermostable direct hemolysin during folding to promote oligomerization. Kundu N; Tichkule S; Pandit SB; Chattopadhyay K Biochem J; 2017 Jan; 474(2):317-331. PubMed ID: 27784764 [TBL] [Abstract][Full Text] [Related]
9. Cholesterol-binding cytolytic protein toxins. Alouf JE Int J Med Microbiol; 2000 Oct; 290(4-5):351-6. PubMed ID: 11111910 [TBL] [Abstract][Full Text] [Related]
10. The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion. Farrand AJ; Hotze EM; Sato TK; Wade KR; Wimley WC; Johnson AE; Tweten RK J Biol Chem; 2015 Jul; 290(29):17733-17744. PubMed ID: 26032415 [TBL] [Abstract][Full Text] [Related]
11. Cholesterol specificity of some heptameric beta-barrel pore-forming bacterial toxins: structural and functional aspects. Harris JR; Palmer M Subcell Biochem; 2010; 51():579-96. PubMed ID: 20213559 [TBL] [Abstract][Full Text] [Related]
12. Essential residues, W177 and R198, of LukF for phosphatidylcholine-binding and pore-formation by staphylococcal gamma-hemolysin on human erythrocyte membranes. Monma N; Nguyen VT; Kaneko J; Higuchi H; Kamio Y J Biochem; 2004 Oct; 136(4):427-31. PubMed ID: 15625310 [TBL] [Abstract][Full Text] [Related]
13. Pore formation by Vibrio cholerae cytolysin follows the same archetypical mode as beta-barrel toxins from gram-positive organisms. Löhner S; Walev I; Boukhallouk F; Palmer M; Bhakdi S; Valeva A FASEB J; 2009 Aug; 23(8):2521-8. PubMed ID: 19276173 [TBL] [Abstract][Full Text] [Related]
14. Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation and small-angle neutron scattering. Gilbert RJ; Heenan RK; Timmins PA; Gingles NA; Mitchell TJ; Rowe AJ; Rossjohn J; Parker MW; Andrew PW; Byron O J Mol Biol; 1999 Nov; 293(5):1145-60. PubMed ID: 10547292 [TBL] [Abstract][Full Text] [Related]
15. Molecular features of the cytolytic pore-forming bacterial protein toxins. Alouf JE Folia Microbiol (Praha); 2003; 48(1):5-16. PubMed ID: 12744072 [TBL] [Abstract][Full Text] [Related]
16. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
17. Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. Valeva A; Weisser A; Walker B; Kehoe M; Bayley H; Bhakdi S; Palmer M EMBO J; 1996 Apr; 15(8):1857-64. PubMed ID: 8617232 [TBL] [Abstract][Full Text] [Related]
18. Engineered covalent leucotoxin heterodimers form functional pores: insights into S-F interactions. Joubert O; Viero G; Keller D; Martinez E; Colin DA; Monteil H; Mourey L; Dalla Serra M; Prévost G Biochem J; 2006 Jun; 396(2):381-9. PubMed ID: 16494579 [TBL] [Abstract][Full Text] [Related]
19. Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Soltani CE; Hotze EM; Johnson AE; Tweten RK Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20226-31. PubMed ID: 18077338 [TBL] [Abstract][Full Text] [Related]
20. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues. Jung Y; Cheley S; Braha O; Bayley H Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]