These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 23016836)

  • 1. Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation.
    Wink AM; de Munck JC; van der Werf YD; van den Heuvel OA; Barkhof F
    Brain Connect; 2012; 2(5):265-74. PubMed ID: 23016836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network centrality in the human functional connectome.
    Zuo XN; Ehmke R; Mennes M; Imperati D; Castellanos FX; Sporns O; Milham MP
    Cereb Cortex; 2012 Aug; 22(8):1862-75. PubMed ID: 21968567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved mapping of interictal epileptiform discharges with EEG-fMRI and voxel-wise functional connectivity analysis.
    Liu JV; Kobylarz EJ; Darcey TM; Lu Z; Wu YC; Meng M; Jobst BC
    Epilepsia; 2014 Sep; 55(9):1380-8. PubMed ID: 25060924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping individual voxel-wise morphological connectivity using wavelet transform of voxel-based morphology.
    Wang XH; Jiao Y; Li L
    PLoS One; 2018; 13(7):e0201243. PubMed ID: 30040855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain.
    Lohmann G; Margulies DS; Horstmann A; Pleger B; Lepsien J; Goldhahn D; Schloegl H; Stumvoll M; Villringer A; Turner R
    PLoS One; 2010 Apr; 5(4):e10232. PubMed ID: 20436911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain regions with abnormal network properties in severe epilepsy of Lennox-Gastaut phenotype: Multivariate analysis of task-free fMRI.
    Pedersen M; Curwood EK; Archer JS; Abbott DF; Jackson GD
    Epilepsia; 2015 Nov; 56(11):1767-73. PubMed ID: 26333833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.
    van den Heuvel MP; Stam CJ; Boersma M; Hulshoff Pol HE
    Neuroimage; 2008 Nov; 43(3):528-39. PubMed ID: 18786642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does motion-related brain functional connectivity reflect both artifacts and genuine neural activity?
    Pujol J; Macià D; Blanco-Hinojo L; Martínez-Vilavella G; Sunyer J; de la Torre R; Caixàs A; Martín-Santos R; Deus J; Harrison BJ
    Neuroimage; 2014 Nov; 101():87-95. PubMed ID: 24999036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the neural basis for fMRI-based functional connectivity in a blocked design: application to interregional correlations and psycho-physiological interactions.
    Kim J; Horwitz B
    Magn Reson Imaging; 2008 Jun; 26(5):583-93. PubMed ID: 18191524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study.
    Klumpers LE; Cole DM; Khalili-Mahani N; Soeter RP; Te Beek ET; Rombouts SA; van Gerven JM
    Neuroimage; 2012 Nov; 63(3):1701-11. PubMed ID: 22885247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional network centrality in obesity: A resting-state and task fMRI study.
    García-García I; Jurado MÁ; Garolera M; Marqués-Iturria I; Horstmann A; Segura B; Pueyo R; Sender-Palacios MJ; Vernet-Vernet M; Villringer A; Junqué C; Margulies DS; Neumann J
    Psychiatry Res; 2015 Sep; 233(3):331-8. PubMed ID: 26145769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition.
    Maggioni E; Tana MG; Arrigoni F; Zucca C; Bianchi AM
    J Neurosci Methods; 2014 May; 228():86-99. PubMed ID: 24675050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disrupted small world networks in patients without overt hepatic encephalopathy: a resting state fMRI study.
    Zhang LJ; Zheng G; Zhang L; Zhong J; Li Q; Zhao TZ; Lu GM
    Eur J Radiol; 2014 Oct; 83(10):1890-9. PubMed ID: 25043497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic framework for brain connectivity from functional MR images.
    Rajapakse JC; Wang Y; Zheng X; Zhou J
    IEEE Trans Med Imaging; 2008 Jun; 27(6):825-33. PubMed ID: 18541489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A SVM-based quantitative fMRI method for resting-state functional network detection.
    Song X; Chen NK
    Magn Reson Imaging; 2014 Sep; 32(7):819-31. PubMed ID: 24928301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.