These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 23016839)
21. Flavonoids as substrates and inhibitors of myeloperoxidase: molecular actions of aglycone and metabolites. Shiba Y; Kinoshita T; Chuman H; Taketani Y; Takeda E; Kato Y; Naito M; Kawabata K; Ishisaka A; Terao J; Kawai Y Chem Res Toxicol; 2008 Aug; 21(8):1600-9. PubMed ID: 18620432 [TBL] [Abstract][Full Text] [Related]
22. Mechanistic characterization of a 2-thioxanthine myeloperoxidase inhibitor and selectivity assessment utilizing click chemistry--activity-based protein profiling. Ward J; Spath SN; Pabst B; Carpino PA; Ruggeri RB; Xing G; Speers AE; Cravatt BF; Ahn K Biochemistry; 2013 Dec; 52(51):9187-201. PubMed ID: 24320749 [TBL] [Abstract][Full Text] [Related]
23. Inhibition of myeloperoxidase: evaluation of 2H-indazoles and 1H-indazolones. Roth A; Ott S; Farber KM; Palazzo TA; Conrad WE; Haddadin MJ; Tantillo DJ; Cross CE; Eiserich JP; Kurth MJ Bioorg Med Chem; 2014 Nov; 22(22):6422-9. PubMed ID: 25438766 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of new scaffolds of myeloperoxidase inhibitors by rational design combined with high-throughput virtual screening. Aldib I; Soubhye J; Zouaoui Boudjeltia K; Vanhaeverbeek M; Rousseau A; Furtmüller PG; Obinger C; Dufrasne F; Nève J; Van Antwerpen P; Prévost M J Med Chem; 2012 Aug; 55(16):7208-18. PubMed ID: 22793255 [TBL] [Abstract][Full Text] [Related]
25. Interrogation of heme pocket environment of mammalian peroxidases with diatomic ligands. Abu-Soud HM; Hazen SL Biochemistry; 2001 Sep; 40(36):10747-55. PubMed ID: 11535049 [TBL] [Abstract][Full Text] [Related]
26. Modeling of 2-pyridin-3-yl-benzo[d][1,3]oxazin-4-one derivatives by several conformational searching tools and molecular docking. Goodarzi M; Bora A; Borota A; Funar-Timofei S; Avram S; Heyden YV Curr Pharm Des; 2013; 19(12):2194-203. PubMed ID: 23016845 [TBL] [Abstract][Full Text] [Related]
27. The Antinociceptive Agent SBFI-26 Binds to Anandamide Transporters FABP5 and FABP7 at Two Different Sites. Hsu HC; Tong S; Zhou Y; Elmes MW; Yan S; Kaczocha M; Deutsch DG; Rizzo RC; Ojima I; Li H Biochemistry; 2017 Jul; 56(27):3454-3462. PubMed ID: 28632393 [TBL] [Abstract][Full Text] [Related]
28. FlexE: efficient molecular docking considering protein structure variations. Claussen H; Buning C; Rarey M; Lengauer T J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774 [TBL] [Abstract][Full Text] [Related]
29. Computational exploration of the binding mode of heme-dependent stimulators into the active catalytic domain of soluble guanylate cyclase. Agulló L; Buch I; Gutiérrez-de-Terán H; Garcia-Dorado D; Villà-Freixa J Proteins; 2016 Oct; 84(10):1534-48. PubMed ID: 27364190 [TBL] [Abstract][Full Text] [Related]
30. Molecular dynamics in drug design. Zhao H; Caflisch A Eur J Med Chem; 2015 Feb; 91():4-14. PubMed ID: 25108504 [TBL] [Abstract][Full Text] [Related]
31. Are induced fit protein conformational changes caused by ligand-binding predictable? A molecular dynamics investigation. Gao C; Desaphy J; Vieth M J Comput Chem; 2017 Jun; 38(15):1229-1237. PubMed ID: 28419481 [TBL] [Abstract][Full Text] [Related]
33. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations. Sixto-López Y; Bello M; Rodríguez-Fonseca RA; Rosales-Hernández MC; Martínez-Archundia M; Gómez-Vidal JA; Correa-Basurto J J Biomol Struct Dyn; 2017 Oct; 35(13):2794-2814. PubMed ID: 27589363 [TBL] [Abstract][Full Text] [Related]
34. Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol. Tsitsanou KE; Hayes JM; Keramioti M; Mamais M; Oikonomakos NG; Kato A; Leonidas DD; Zographos SE Food Chem Toxicol; 2013 Nov; 61():14-27. PubMed ID: 23279842 [TBL] [Abstract][Full Text] [Related]
35. A novel multistep mechanism for oxygen binding to ferrous hemoproteins: rapid kinetic analysis of ferrous-dioxy myeloperoxidase (compound III) formation. Abu-Soud HM; Raushel FM; Hazen SL Biochemistry; 2004 Sep; 43(36):11589-95. PubMed ID: 15350145 [TBL] [Abstract][Full Text] [Related]
36. Myeloperoxidase: a target for new drug development? Malle E; Furtmüller PG; Sattler W; Obinger C Br J Pharmacol; 2007 Nov; 152(6):838-54. PubMed ID: 17592500 [TBL] [Abstract][Full Text] [Related]
37. Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL. Exner M; Hermann M; Hofbauer R; Hartmann B; Kapiotis S; Gmeiner B Free Radic Biol Med; 2004 Jul; 37(2):146-55. PubMed ID: 15203186 [TBL] [Abstract][Full Text] [Related]
38. In silico probing exercises, bioactive-conformational and dynamic simulations strategies for designing and promoting selective therapeutics against Helicobacter pylori strains. Pasala C; Katari SK; Nalamolu RM; Bitla AR; Amineni U J Mol Graph Model; 2019 Nov; 92():167-179. PubMed ID: 31376734 [TBL] [Abstract][Full Text] [Related]
39. Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data. González-Andrade M; Rodríguez-Sotres R; Madariaga-Mazón A; Rivera-Chávez J; Mata R; Sosa-Peinado A; Del Pozo-Yauner L; Arias-Olguín II J Biomol Struct Dyn; 2016; 34(1):78-91. PubMed ID: 25702612 [TBL] [Abstract][Full Text] [Related]
40. Ligand retargeting by binding site analogy. Wiedmer L; Schärer C; Spiliotopoulos D; Hürzeler M; Śledź P; Caflisch A Eur J Med Chem; 2019 Aug; 175():107-113. PubMed ID: 31077996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]