These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 23016847)

  • 41. Binding site detection and druggability prediction of protein targets for structure-based drug design.
    Yuan Y; Pei J; Lai L
    Curr Pharm Des; 2013; 19(12):2326-33. PubMed ID: 23082974
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Supervised consensus scoring for docking and virtual screening.
    Teramoto R; Fukunishi H
    J Chem Inf Model; 2007; 47(2):526-34. PubMed ID: 17295466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction.
    Cheng T; Liu Z; Wang R
    BMC Bioinformatics; 2010 Apr; 11():193. PubMed ID: 20398404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.
    Liu J; He X; Zhang JZ
    J Chem Inf Model; 2013 Jun; 53(6):1306-14. PubMed ID: 23651068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein-Ligand Scoring with Convolutional Neural Networks.
    Ragoza M; Hochuli J; Idrobo E; Sunseri J; Koes DR
    J Chem Inf Model; 2017 Apr; 57(4):942-957. PubMed ID: 28368587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Choosing the Optimal Rigid Receptor for Docking and Scoring in the CSAR 2013/2014 Experiment.
    Baumgartner MP; Camacho CJ
    J Chem Inf Model; 2016 Jun; 56(6):1004-12. PubMed ID: 26222931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem.
    Ban T; Ohue M; Akiyama Y
    Comput Biol Chem; 2018 Apr; 73():139-146. PubMed ID: 29482137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015.
    Kumar A; Zhang KY
    J Comput Aided Mol Des; 2016 Sep; 30(9):685-693. PubMed ID: 27484214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A D3R prospective evaluation of machine learning for protein-ligand scoring.
    Sunseri J; Ragoza M; Collins J; Koes DR
    J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Screening of drug target proteins by 2D ligand matching approach.
    Feng J; Guo H; Wang J; Lu T
    Chem Biol Drug Des; 2014 Feb; 83(2):174-82. PubMed ID: 24034065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HotLig: a molecular surface-directed approach to scoring protein-ligand interactions.
    Wang SH; Wu YT; Kuo SC; Yu J
    J Chem Inf Model; 2013 Aug; 53(8):2181-95. PubMed ID: 23862697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of several two-step scoring functions based on linear interaction energy, effective ligand size, and empirical pair potentials for prediction of protein-ligand binding geometry and free energy.
    Rahaman O; Estrada TP; Doren DJ; Taufer M; Brooks CL; Armen RS
    J Chem Inf Model; 2011 Sep; 51(9):2047-65. PubMed ID: 21644546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor.
    Liu Q; Kwoh CK; Li J
    J Chem Inf Model; 2013 Nov; 53(11):3076-85. PubMed ID: 24191692
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Statistical potential for modeling and ranking of protein-ligand interactions.
    Fan H; Schneidman-Duhovny D; Irwin JJ; Dong G; Shoichet BK; Sali A
    J Chem Inf Model; 2011 Dec; 51(12):3078-92. PubMed ID: 22014038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Template-Based Method for Conformation Generation and Scoring for Congeneric Series of Ligands.
    Raman EP
    J Chem Inf Model; 2019 Jun; 59(6):2690-2701. PubMed ID: 31045363
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physics-based methods for studying protein-ligand interactions.
    Huang N; Jacobson MP
    Curr Opin Drug Discov Devel; 2007 May; 10(3):325-31. PubMed ID: 17554859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.