BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23016947)

  • 1. Growth requirements and chromosomal instability of induced pluripotent stem cells generated from adult canine fibroblasts.
    Koh S; Thomas R; Tsai S; Bischoff S; Lim JH; Breen M; Olby NJ; Piedrahita JA
    Stem Cells Dev; 2013 Mar; 22(6):951-63. PubMed ID: 23016947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of canine induced pluripotent stem cells under feeder-free conditions using Sendai virus vector encoding six canine reprogramming factors.
    Tsukamoto M; Kimura K; Yoshida T; Tanaka M; Kuwamura M; Ayabe T; Ishihara G; Watanabe K; Okada M; Iijima M; Nakanishi M; Akutsu H; Sugiura K; Hatoya S
    Stem Cell Reports; 2024 Jan; 19(1):141-157. PubMed ID: 38134923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation and characterization of bat-induced pluripotent stem cells.
    Mo X; Li N; Wu S
    Theriogenology; 2014 Jul; 82(2):283-93. PubMed ID: 24853281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Canine induced pluripotent stem cells can be successfully maintained in weekend-free culture systems.
    Kimura K; Nagakura H; Tsukamoto M; Yoshida T; Sugisaki H; Shishida K; Tachi Y; Shimasaki S; Sugiura K; Hatoya S
    J Vet Med Sci; 2024 Mar; 86(3):247-257. PubMed ID: 38171744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chromatin Regulator ZMYM2 Restricts Human Pluripotent Stem Cell Growth and Is Essential for Teratoma Formation.
    Lezmi E; Weissbein U; Golan-Lev T; Nissim-Rafinia M; Meshorer E; Benvenisty N
    Stem Cell Reports; 2020 Dec; 15(6):1275-1286. PubMed ID: 32559458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced Pluripotent Stem Cells of Microtus levis x Microtus arvalis Vole Hybrids: Conditions Necessary for Their Generation and Self-Renewal.
    Grigor'eva EV; Shevchenko AI; Medvedev SP; Mazurok NA; Zhelezova AI; Zakian SM
    Acta Naturae; 2015; 7(4):56-69. PubMed ID: 26798492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muse Cells: Nontumorigenic Pluripotent Stem Cells Present in Adult Tissues-A Paradigm Shift in Tissue Regeneration and Evolution.
    Simerman AA; Phan JD; Dumesic DA; Chazenbalk GD
    Stem Cells Int; 2016; 2016():1463258. PubMed ID: 28070194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of mesenchymal stromal cells from canine induced pluripotent stem cells by inhibition of the TGFβ/activin signaling pathway.
    Whitworth DJ; Frith JE; Frith TJ; Ovchinnikov DA; Cooper-White JJ; Wolvetang EJ
    Stem Cells Dev; 2014 Dec; 23(24):3021-33. PubMed ID: 25055193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of putative markers of pluripotency in equine embryonic and adult tissues.
    Esteves CL; Sharma R; Dawson L; Taylor SE; Pearson G; Keen JA; McDonald K; Aurich C; Donadeu FX
    Vet J; 2014 Dec; 202(3):533-5. PubMed ID: 25241949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From "ES-like" cells to induced pluripotent stem cells: a historical perspective in domestic animals.
    Koh S; Piedrahita JA
    Theriogenology; 2014 Jan; 81(1):103-11. PubMed ID: 24274415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Reprogramming of Canine Peripheral Blood Mononuclear Cells into Induced Pluripotent Stem Cells.
    Kimura K; Tsukamoto M; Tanaka M; Kuwamura M; Ohtaka M; Nishimura K; Nakanishi M; Sugiura K; Hatoya S
    Stem Cells Dev; 2021 Jan; 30(2):79-90. PubMed ID: 33256572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opening the "Black Box" Underlying Barriers to the Use of Canine Induced Pluripotent Stem Cells: A Narrative Review.
    Kuzma-Hunt AG; Shah V; DiMarco S; Russell KA; Betts DH; Koch TG
    Stem Cells Dev; 2023 Jun; 32(11-12):271-291. PubMed ID: 36884307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pluripotent Stem Cells of Order Carnivora: Technical Perspective.
    Menzorov AG
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Basis of Dilated Cardiomyopathy in Dogs and Its Potential as a Bidirectional Model.
    Gaar-Humphreys KR; Spanjersberg TCF; Santarelli G; Grinwis GCM; Szatmári V; Roelen BAJ; Vink A; van Tintelen JP; Asselbergs FW; Fieten H; Harakalova M; van Steenbeek FG
    Animals (Basel); 2022 Jun; 12(13):. PubMed ID: 35804579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams.
    Martínez-Falguera D; Iborra-Egea O; Gálvez-Montón C
    Biomedicines; 2021 Dec; 9(12):. PubMed ID: 34944652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-
    Kim SH; Kim B; Kim JH; Kim DH; Lee SH; Lee DS; Lee HJ
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspectives of pluripotent stem cells in livestock.
    Kumar D; Talluri TR; Selokar NL; Hyder I; Kues WA
    World J Stem Cells; 2021 Jan; 13(1):1-29. PubMed ID: 33584977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted expression profiling reveals distinct stages of early canine fibroblast reprogramming are regulated by 2-oxoglutarate hydroxylases.
    Tobias IC; Kao MC; Parmentier T; Hunter H; LaMarre J; Betts DH
    Stem Cell Res Ther; 2020 Dec; 11(1):528. PubMed ID: 33298190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of induced pluripotent stem cells in domestic animals: a narrative review.
    Scarfone RA; Pena SM; Russell KA; Betts DH; Koch TG
    BMC Vet Res; 2020 Dec; 16(1):477. PubMed ID: 33292200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Approaches for the Induction of Putative Canine Induced Pluripotent Stem Cells from Old Fibroblasts Using Synthetic RNAs.
    Kim M; Hwang SU; Yoon JD; Jeong YW; Kim E; Hyun SH
    Animals (Basel); 2020 Oct; 10(10):. PubMed ID: 33050577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.