These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23017149)

  • 1. Biodegradable composite scaffolds: a strategy to modulate stem cell behaviour.
    Armentano I; Fortunati E; Mattioli S; Rescignano N; Kenny JM
    Recent Pat Drug Deliv Formul; 2013 Apr; 7(1):9-17. PubMed ID: 23017149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds.
    Zhang F; King MW
    Adv Healthc Mater; 2020 Jul; 9(13):e1901358. PubMed ID: 32424996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials.
    Dubey SK; Alexander A; Sivaram M; Agrawal M; Singhvi G; Sharma S; Dayaramani R
    Curr Stem Cell Res Ther; 2020; 15(3):187-201. PubMed ID: 31957615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.
    Deng M; James R; Laurencin CT; Kumbar SG
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):3-14. PubMed ID: 22275722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage.
    Moutos FT; Freed LE; Guilak F
    Nat Mater; 2007 Feb; 6(2):162-7. PubMed ID: 17237789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.
    Rana D; Ramasamy K; Leena M; Jiménez C; Campos J; Ibarra P; Haidar ZS; Ramalingam M
    Biotechnol Prog; 2016 May; 32(3):554-67. PubMed ID: 27006260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biomaterials for bone defect repair and bone regeneration].
    Jiang XQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Oct; 52(10):600-604. PubMed ID: 29972932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.
    Lotfi M; Bagherzadeh R; Naderi-Meshkin H; Mahdipour E; Mafinezhad A; Sadeghnia HR; Esmaily H; Maleki M; Hasssanzadeh H; Ghayaour-Mobarhan M; Bidkhori HR; Bahrami AR
    Biopolymers; 2016 Mar; 105(3):163-75. PubMed ID: 26566174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering.
    Ashammakhi N; Ndreu A; Piras AM; Nikkola L; Sindelar T; Ylikauppila H; Harlin A; Gomes ME; Neves NM; Chiellini E; Chiellini F; Hasirci V; Redl H; Reis RL
    J Nanosci Nanotechnol; 2007 Mar; 7(3):862-82. PubMed ID: 17450849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Great Harmony in Translational Medicine: Biomaterials and Stem Cells.
    Erten E; Arslan YE
    Adv Exp Med Biol; 2018; 1119():21-39. PubMed ID: 29876869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.
    Song K; Li L; Yan X; Zhang Y; Li R; Wang Y; Wang L; Wang H; Liu T
    J Mater Sci Mater Med; 2016 Jun; 27(6):114. PubMed ID: 27180235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering.
    Yang F; Murugan R; Ramakrishna S; Wang X; Ma YX; Wang S
    Biomaterials; 2004 May; 25(10):1891-900. PubMed ID: 14738853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite scaffolds for cartilage tissue engineering.
    Moutos FT; Guilak F
    Biorheology; 2008; 45(3-4):501-12. PubMed ID: 18836249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering.
    Nisbet DR; Forsythe JS; Shen W; Finkelstein DI; Horne MK
    J Biomater Appl; 2009 Jul; 24(1):7-29. PubMed ID: 19074469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current approaches to electrospun nanofibers for tissue engineering.
    Rim NG; Shin CS; Shin H
    Biomed Mater; 2013 Feb; 8(1):014102. PubMed ID: 23472258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in polymeric systems for tissue engineering and biomedical applications.
    Ravichandran R; Sundarrajan S; Venugopal JR; Mukherjee S; Ramakrishna S
    Macromol Biosci; 2012 Mar; 12(3):286-311. PubMed ID: 22278779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomaterials approach to expand and direct differentiation of stem cells.
    Chai C; Leong KW
    Mol Ther; 2007 Mar; 15(3):467-80. PubMed ID: 17264853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.