BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23017334)

  • 1. Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma.
    Armstrong GA; Rodríguez EC; Meldrum Robertson R
    J Insect Physiol; 2012 Nov; 58(11):1511-6. PubMed ID: 23017334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in Locusta migratoria.
    Findsen A; Pedersen TH; Petersen AG; Nielsen OB; Overgaard J
    J Exp Biol; 2014 Apr; 217(Pt 8):1297-306. PubMed ID: 24744424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster.
    Nilson TL; Sinclair BJ; Roberts SP
    J Insect Physiol; 2006 Oct; 52(10):1027-33. PubMed ID: 16996534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chill-tolerant Gryllus crickets maintain ion balance at low temperatures.
    Coello Alvarado LE; MacMillan HA; Sinclair BJ
    J Insect Physiol; 2015 Jun; 77():15-25. PubMed ID: 25846013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid cold hardening and octopamine modulate chill tolerance in Locusta migratoria.
    Srithiphaphirom P; Lavallee S; Robertson RM
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():28-35. PubMed ID: 30991118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria.
    Findsen A; Andersen JL; Calderon S; Overgaard J
    J Exp Biol; 2013 May; 216(Pt 9):1630-7. PubMed ID: 23348947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeding impairs chill coma recovery in the migratory locust (Locusta migratoria).
    Andersen JL; Findsen A; Overgaard J
    J Insect Physiol; 2013 Oct; 59(10):1041-8. PubMed ID: 23932963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection.
    Gerken AR; Mackay TF; Morgan TJ
    J Therm Biol; 2016 Jul; 59():77-85. PubMed ID: 27264892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in
    Yerushalmi GY; Misyura L; MacMillan HA; Donini A
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29367271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling.
    MacMillan HA; Findsen A; Pedersen TH; Overgaard J
    J Exp Biol; 2014 Aug; 217(Pt 16):2930-8. PubMed ID: 24902750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster.
    Macdonald SS; Rako L; Batterham P; Hoffmann AA
    J Insect Physiol; 2004 Aug; 50(8):695-700. PubMed ID: 15288203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid cold hardening delays the onset of anoxia-induced coma via an octopaminergic pathway in Locusta migratoria.
    Srithiphaphirom P; Robertson RM
    J Insect Physiol; 2022; 137():104360. PubMed ID: 35041846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.
    Milton CC; Partridge L
    J Insect Physiol; 2008 Jan; 54(1):32-40. PubMed ID: 17884085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased abundance of frost mRNA during recovery from cold stress is not essential for cold tolerance in adult Drosophila melanogaster.
    Udaka H; Percival-Smith A; Sinclair BJ
    Insect Mol Biol; 2013 Oct; 22(5):541-50. PubMed ID: 23901849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster.
    Ransberry VE; MacMillan HA; Sinclair BJ
    Physiol Biochem Zool; 2011; 84(6):553-9. PubMed ID: 22030848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexity of the cold acclimation response in Drosophila melanogaster.
    Rako L; Hoffmann AA
    J Insect Physiol; 2006 Jan; 52(1):94-104. PubMed ID: 16257412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma.
    Udaka H; Ueda C; Goto SG
    J Insect Physiol; 2010 Dec; 56(12):1889-94. PubMed ID: 20713057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic dietary salt stress mitigates hyperkalemia and facilitates chill coma recovery in Drosophila melanogaster.
    Yerushalmi GY; Misyura L; Donini A; MacMillan HA
    J Insect Physiol; 2016 Dec; 95():89-97. PubMed ID: 27642001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits.
    Anderson AR; Hoffmann AA; McKechnie SW
    Genet Res; 2005 Feb; 85(1):15-22. PubMed ID: 16089033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effect of hypothermia on brain potassium homeostasis during repetitive anoxia in Drosophila melanogaster.
    Rodríguez EC; Robertson RM
    J Exp Biol; 2012 Dec; 215(Pt 23):4157-65. PubMed ID: 22899531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.