These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 23017379)
1. A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur. Hazrati Marangalou J; Ito K; van Rietbergen B J Biomech; 2012 Nov; 45(16):2884-92. PubMed ID: 23017379 [TBL] [Abstract][Full Text] [Related]
2. A novel approach to estimate trabecular bone anisotropy using a database approach. Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430 [TBL] [Abstract][Full Text] [Related]
3. A novel approach to estimate trabecular bone anisotropy from stress tensors. Hazrati Marangalou J; Ito K; van Rietbergen B Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672 [TBL] [Abstract][Full Text] [Related]
4. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Yosibash Z; Tal D; Trabelsi N Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270 [TBL] [Abstract][Full Text] [Related]
5. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. Trabelsi N; Yosibash Z J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921 [TBL] [Abstract][Full Text] [Related]
6. Comparison of micro-level and continuum-level voxel models of the proximal femur. Verhulp E; van Rietbergen B; Huiskes R J Biomech; 2006; 39(16):2951-7. PubMed ID: 16359680 [TBL] [Abstract][Full Text] [Related]
7. Concept and development of an orthotropic FE model of the proximal femur. Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369 [TBL] [Abstract][Full Text] [Related]
8. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. Pahr DH; Zysset PK J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014 [TBL] [Abstract][Full Text] [Related]
9. Constructing anisotropic finite element model of bone from computed tomography (CT). Kazembakhshi S; Luo Y Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965 [TBL] [Abstract][Full Text] [Related]
10. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Baca V; Horak Z; Mikulenka P; Dzupa V Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761 [TBL] [Abstract][Full Text] [Related]
11. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
12. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study. Nazemi SM; Cooper DM; Johnston JD Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of osseointegrated screw-bone construct stiffness and peri-implant loading predicted by homogenized FE models relative to micro-FE models. Synek A; Ortner L; Pahr DH J Mech Behav Biomed Mater; 2023 Apr; 140():105740. PubMed ID: 36863197 [TBL] [Abstract][Full Text] [Related]
14. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones. Eberle S; Göttlinger M; Augat P Med Eng Phys; 2013 Jul; 35(7):875-83. PubMed ID: 23010570 [TBL] [Abstract][Full Text] [Related]
15. Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. San Antonio T; Ciaccia M; Müller-Karger C; Casanova E Med Eng Phys; 2012 Sep; 34(7):914-9. PubMed ID: 22100056 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity of the stress field of the proximal femur predicted by CT-based FE analysis to modeling uncertainties. Youssefian S; Bressner JA; Osanov M; Guest JK; Zbijewski WB; Levin AS J Orthop Res; 2022 May; 40(5):1163-1173. PubMed ID: 34191377 [TBL] [Abstract][Full Text] [Related]
17. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia. Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243 [TBL] [Abstract][Full Text] [Related]
18. Morphology based anisotropic finite element models of the proximal femur validated with experimental data. Enns-Bray WS; Ariza O; Gilchrist S; Widmer Soyka RP; Vogt PJ; Palsson H; Boyd SK; Guy P; Cripton PA; Ferguson SJ; Helgason B Med Eng Phys; 2016 Nov; 38(11):1339-1347. PubMed ID: 27641660 [TBL] [Abstract][Full Text] [Related]
19. Probabilistic finite element analysis of a craniofacial finite element model. Berthaume MA; Dechow PC; Iriarte-Diaz J; Ross CF; Strait DS; Wang Q; Grosse IR J Theor Biol; 2012 May; 300():242-53. PubMed ID: 22306513 [TBL] [Abstract][Full Text] [Related]
20. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Peng L; Bai J; Zeng X; Zhou Y Med Eng Phys; 2006 Apr; 28(3):227-33. PubMed ID: 16076560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]