These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 23017403)
21. Meta-analysis of the effect of β-glucan intake on blood cholesterol and glucose levels. Tiwari U; Cummins E Nutrition; 2011 Oct; 27(10):1008-16. PubMed ID: 21470820 [TBL] [Abstract][Full Text] [Related]
22. Molecular weight and structure of water soluble (1→3), (1→4)-β-glucans affect pasting properties of oat flours. Liu Y; White PJ J Food Sci; 2011; 76(1):C68-74. PubMed ID: 21535656 [TBL] [Abstract][Full Text] [Related]
23. In vitro digestion rate and estimated glycemic index of oat flours from typical and high β-glucan oat lines. Kim HJ; White PJ J Agric Food Chem; 2012 May; 60(20):5237-42. PubMed ID: 22563763 [TBL] [Abstract][Full Text] [Related]
24. Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight. Agbenorhevi JK; Kontogiorgos V; Kasapis S Food Chem; 2013 May; 138(1):630-7. PubMed ID: 23265533 [TBL] [Abstract][Full Text] [Related]
25. Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight. Agbenorhevi JK; Kontogiorgos V; Kirby AR; Morris VJ; Tosh SM Int J Biol Macromol; 2011 Oct; 49(3):369-77. PubMed ID: 21640753 [TBL] [Abstract][Full Text] [Related]
26. In vitro bile acid binding of flours from oat lines varying in percentage and molecular weight distribution of beta-glucan. Sayar S; Jannink JL; White PJ J Agric Food Chem; 2005 Nov; 53(22):8797-803. PubMed ID: 16248587 [TBL] [Abstract][Full Text] [Related]
27. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products. Tosh SM Eur J Clin Nutr; 2013 Apr; 67(4):310-7. PubMed ID: 23422921 [TBL] [Abstract][Full Text] [Related]
28. Interactional effects of β-glucan, starch, and protein in heated oat slurries on viscosity and in vitro bile acid binding. Kim HJ; White PJ J Agric Food Chem; 2012 Jun; 60(24):6217-22. PubMed ID: 22620860 [TBL] [Abstract][Full Text] [Related]
29. In vitro bile-acid binding and fermentation of high, medium, and low molecular weight beta-glucan. Kim HJ; White PJ J Agric Food Chem; 2010 Jan; 58(1):628-34. PubMed ID: 20020684 [TBL] [Abstract][Full Text] [Related]
30. Release of mixed linkage (1-->3),(1-->4) beta-D-glucans from barley by protease activity and effects on ileal effluent. Robertson JA; Majsak-Newman G; Ring SG Int J Biol Macromol; 1997 Aug; 21(1-2):57-60. PubMed ID: 9283016 [TBL] [Abstract][Full Text] [Related]
31. The oxidative degradation of barley β-glucan in the presence of ascorbic acid or hydrogen peroxide. Mäkelä N; Sontag-Strohm T; Maina NH Carbohydr Polym; 2015 Jun; 123():390-5. PubMed ID: 25843872 [TBL] [Abstract][Full Text] [Related]
32. Extraction and characterization of beta-D-glucan from oat for industrial utilization. Ahmad A; Anjum FM; Zahoor T; Nawaz H; Ahmed Z Int J Biol Macromol; 2010 Apr; 46(3):304-9. PubMed ID: 20083136 [TBL] [Abstract][Full Text] [Related]
33. The hydrolysis of barley beta-glucan by the cellulase EC 3.2.1.4 under dilute conditions is identical to that of barley solubilase. Wilhelmi C; Morgan K Carbohydr Res; 2001 Feb; 330(3):373-80. PubMed ID: 11270816 [TBL] [Abstract][Full Text] [Related]
34. Molecular basis of structural makeup of hulless barley in relation to rumen degradation kinetics and intestinal availability in dairy cattle: A novel approach. Damiran D; Yu P J Dairy Sci; 2011 Oct; 94(10):5151-9. PubMed ID: 21943765 [TBL] [Abstract][Full Text] [Related]
35. Supplementation of a high-carbohydrate breakfast with barley beta-glucan improves postprandial glycaemic response for meals but not beverages. Poppitt SD; van Drunen JD; McGill AT; Mulvey TB; Leahy FE Asia Pac J Clin Nutr; 2007; 16(1):16-24. PubMed ID: 17215176 [TBL] [Abstract][Full Text] [Related]
36. Synthesis, characterization, and aqueous self-assembly of octenylsuccinate Oat β-glucan. Liu J; Li J; Ma Y; Chen F; Zhao G J Agric Food Chem; 2013 Dec; 61(51):12683-91. PubMed ID: 24313441 [TBL] [Abstract][Full Text] [Related]
37. Characterization of β-glucan gum for food applications as influenced by genotypic variations in three hulless barley varieties. Abdel-Haleem AMH; Agwa AM; Mahgoub SA; Shehata WM J Food Sci; 2020 Jun; 85(6):1689-1698. PubMed ID: 32458491 [TBL] [Abstract][Full Text] [Related]
38. Effect of Growth Conditions and Genotype on Barley Yield and β-Glucan Content of Kernels and Malt. Tomasi I; Sileoni V; Marconi O; Bonciarelli U; Guiducci M; Maranghi S; Perretti G J Agric Food Chem; 2019 Jun; 67(22):6324-6335. PubMed ID: 31083935 [TBL] [Abstract][Full Text] [Related]
39. Germination and microwave processing of barley (Hordeum vulgare L) changes the structural and physicochemical properties of β-d-glucan & enhances its antioxidant potential. Ahmad M; Gani A; Shah A; Gani A; Masoodi FA Carbohydr Polym; 2016 Nov; 153():696-702. PubMed ID: 27561541 [TBL] [Abstract][Full Text] [Related]
40. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. Taketa S; Yuo T; Tonooka T; Tsumuraya Y; Inagaki Y; Haruyama N; Larroque O; Jobling SA J Exp Bot; 2012 Jan; 63(1):381-92. PubMed ID: 21940720 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]