These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23017947)

  • 1. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells.
    Yamamoto T; Kondo S; Kim KH; Asaoka S; Yamamoto H; Tokuoka M; Hibino T
    Mar Pollut Bull; 2012 Nov; 64(11):2428-34. PubMed ID: 23017947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments.
    Asaoka S; Yamamoto T; Kondo S; Hayakawa S
    Bioresour Technol; 2009 Sep; 100(18):4127-32. PubMed ID: 19394819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of coastal marine sediments using granulated coal ash.
    Asaoka S; Yamamoto T; Yoshioka I; Tanaka H
    J Hazard Mater; 2009 Dec; 172(1):92-8. PubMed ID: 19632778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pilot study on remediation of sediments enriched by oyster farming wastes using granulated coal ash.
    Yamamoto T; Kim KH; Shirono K
    Mar Pollut Bull; 2015 Jan; 90(1-2):54-9. PubMed ID: 25480153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pilot study on remediation of muddy tidal flat using porous pile.
    Ryu SH; Nakashita S; Lee IC; Kim DS; Kim JR; Hibino T; Yamamoto T; Asaoka S; Kim K
    Mar Pollut Bull; 2017 Jan; 114(2):837-842. PubMed ID: 27847166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hydrogen sulfide on phosphorus lability in lake sediments amended with drinking water treatment residuals.
    Wang C; Liu J; Pei Y
    Chemosphere; 2013 May; 91(9):1344-8. PubMed ID: 23453604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing a granulated coal bottom ash and oyster shells for nutrient removal in eutrophic sediments.
    Jeong I; Kim K
    Mar Pollut Bull; 2022 Apr; 177():113549. PubMed ID: 35303632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blast furnace slag can effectively remediate coastal marine sediments affected by organic enrichment.
    Asaoka S; Yamamoto T
    Mar Pollut Bull; 2010 Apr; 60(4):573-8. PubMed ID: 20003992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.
    Moon DH; Wazne M; Cheong KH; Chang YY; Baek K; Ok YS; Park JH
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):11162-9. PubMed ID: 26013737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benthic ecosystem development in an artificial tidal flat constructed from dredged spoil.
    Ishii R; Nakano Y; Nakai S; Nishijima W; Okada M
    Mar Pollut Bull; 2008 Dec; 56(12):2059-66. PubMed ID: 18834603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of spilled oil on the tidal flat ecosystem--evaluation of wave and tidal actions using a tidal flat simulator.
    Cheong CJ; Okada M
    Water Sci Technol; 2001; 43(2):171-7. PubMed ID: 11380177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oyster shell powder for Pb(II) immobilization in both aquatic and sediment environments.
    Zhong G; Liu Y; Tang Y
    Environ Geochem Health; 2021 May; 43(5):1891-1902. PubMed ID: 33175300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of Cu-contaminated army firing range soils using waste oyster shells.
    Moon DH; Cheong KH; Khim J; Grubb DG; Ko I
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():159-66. PubMed ID: 21061045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of Pb²⁺ and Cu²⁺ contaminated firing range soil using calcined oyster shells and waste cow bones.
    Moon DH; Cheong KH; Khim J; Wazne M; Hyun S; Park JH; Chang YY; Ok YS
    Chemosphere; 2013 May; 91(9):1349-54. PubMed ID: 23478128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field experiments on remediation of coastal sediments using granulated coal ash.
    Kim K; Hibino T; Yamamoto T; Hayakawa S; Mito Y; Nakamoto K; Lee IC
    Mar Pollut Bull; 2014 Jun; 83(1):132-7. PubMed ID: 24759507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecological evaluation of an experimental beneficial use scheme for dredged sediment disposal in shallow tidal waters.
    van der Wal D; Forster RM; Rossi F; Hummel H; Ysebaert T; Roose F; Herman PM
    Mar Pollut Bull; 2011 Jan; 62(1):99-108. PubMed ID: 20888603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil.
    Isoyama M; Wada S
    J Hazard Mater; 2007 May; 143(3):636-42. PubMed ID: 17267106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benthic denitrification and organic matter mineralization in intertidal flats of an enclosed coastal inlet, Ago Bay, Japan.
    Patel AB
    Mar Pollut Bull; 2008; 57(1-5):116-24. PubMed ID: 18402984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integral assessment of pollution in the Suquía River (Córdoba, Argentina) as a contribution to lotic ecosystem restoration programs.
    Merlo C; Abril A; Amé MV; Argüello GA; Carreras HA; Chiappero MS; Hued AC; Wannaz E; Galanti LN; Monferrán MV; González CM; Solís VM
    Sci Total Environ; 2011 Nov; 409(23):5034-45. PubMed ID: 21925711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lake restoration by hypolimnetic Ca(OH)2 treatment: impact on phosphorus sedimentation and release from sediment.
    Dittrich M; Gabriel O; Rutzen C; Koschel R
    Sci Total Environ; 2011 Mar; 409(8):1504-15. PubMed ID: 21292312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.