These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23018418)

  • 1. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells.
    Ando W; Fujie H; Moriguchi Y; Nansai R; Shimomura K; Hart DA; Yoshikawa H; Nakamura N
    Eur Cell Mater; 2012 Sep; 24():292-307. PubMed ID: 23018418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells.
    Ando W; Tateishi K; Hart DA; Katakai D; Tanaka Y; Nakata K; Hashimoto J; Fujie H; Shino K; Yoshikawa H; Nakamura N
    Biomaterials; 2007 Dec; 28(36):5462-70. PubMed ID: 17854887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zone-specific integrated cartilage repair using a scaffold-free tissue engineered construct derived from allogenic synovial mesenchymal stem cells: Biomechanical and histological assessments.
    Fujie H; Nansai R; Ando W; Shimomura K; Moriguchi Y; Hart DA; Nakamura N
    J Biomech; 2015 Nov; 48(15):4101-4108. PubMed ID: 26549765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive properties of cartilage-like tissues repaired in vivo with scaffold-free, tissue engineered constructs.
    Katakai D; Imura M; Ando W; Tateishi K; Yoshikawa H; Nakamura N; Fujie H
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):110-6. PubMed ID: 18990475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Scaffold-Free Tissue-Engineered Constructs Derived from Human Synovial Mesenchymal Stem Cells Under Low Oxygen Tension Enhances Their Chondrogenic Differentiation Capacity.
    Yasui Y; Chijimatsu R; Hart DA; Koizumi K; Sugita N; Shimomura K; Myoui A; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2016 Mar; 22(5-6):490-500. PubMed ID: 26974507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frictional properties of articular cartilage-like tissues repaired with a mesenchymal stem cell-based tissue engineered construct.
    Fujie H; Nakamura N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():401-4. PubMed ID: 24109708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model.
    Shimomura K; Ando W; Tateishi K; Nansai R; Fujie H; Hart DA; Kohda H; Kita K; Kanamoto T; Mae T; Nakata K; Shino K; Yoshikawa H; Nakamura N
    Biomaterials; 2010 Nov; 31(31):8004-11. PubMed ID: 20674010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model.
    Moriguchi Y; Tateishi K; Ando W; Shimomura K; Yonetani Y; Tanaka Y; Kita K; Hart DA; Gobbi A; Shino K; Yoshikawa H; Nakamura N
    Biomaterials; 2013 Mar; 34(9):2185-93. PubMed ID: 23261221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-in-Human Pilot Study of Implantation of a Scaffold-Free Tissue-Engineered Construct Generated From Autologous Synovial Mesenchymal Stem Cells for Repair of Knee Chondral Lesions.
    Shimomura K; Yasui Y; Koizumi K; Chijimatsu R; Hart DA; Yonetani Y; Ando W; Nishii T; Kanamoto T; Horibe S; Yoshikawa H; Nakamura N; Sakaue M; Sugita N; Moriguchi Y
    Am J Sports Med; 2018 Aug; 46(10):2384-2393. PubMed ID: 29969043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential.
    Ando W; Tateishi K; Katakai D; Hart DA; Higuchi C; Nakata K; Hashimoto J; Fujie H; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2008 Dec; 14(12):2041-9. PubMed ID: 18636944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering superficial zone features in tissue engineered cartilage.
    Chen T; Hilton MJ; Brown EB; Zuscik MJ; Awad HA
    Biotechnol Bioeng; 2013 May; 110(5):1476-86. PubMed ID: 23239161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal progenitor cells derived from synovium and infrapatellar fat pad as a source for superficial zone cartilage tissue engineering: analysis of superficial zone protein/lubricin expression.
    Lee SY; Nakagawa T; Reddi AH
    Tissue Eng Part A; 2010 Jan; 16(1):317-25. PubMed ID: 19702511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of different mechanical environments on repair of cartilage defect with rabbit marrow mesenchymal stem cells].
    Wang G; Liu Y; Shan YX
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Mar; 18(2):96-9. PubMed ID: 15065405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering approach.
    Koizumi K; Ebina K; Hart DA; Hirao M; Noguchi T; Sugita N; Yasui Y; Chijimatsu R; Yoshikawa H; Nakamura N
    Osteoarthritis Cartilage; 2016 Aug; 24(8):1413-22. PubMed ID: 26973329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondroinduction Is the Main Cartilage Repair Response to Microfracture and Microfracture With BST-CarGel: Results as Shown by ICRS-II Histological Scoring and a Novel Zonal Collagen Type Scoring Method of Human Clinical Biopsy Specimens.
    Hoemann CD; Tran-Khanh N; Chevrier A; Chen G; Lascau-Coman V; Mathieu C; Changoor A; Yaroshinsky A; McCormack RG; Stanish WD; Buschmann MD
    Am J Sports Med; 2015 Oct; 43(10):2469-80. PubMed ID: 26260465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of 2 Different Formulations of Artificial Bone for a Hybrid Implant With a Tissue-Engineered Construct Derived From Synovial Mesenchymal Stem Cells: A Study Using a Rabbit Osteochondral Defect Model.
    Shimomura K; Moriguchi Y; Nansai R; Fujie H; Ando W; Horibe S; Hart DA; Gobbi A; Yoshikawa H; Nakamura N
    Am J Sports Med; 2017 Mar; 45(3):666-675. PubMed ID: 28272938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Dependent Recovery of Human Synovial Membrane Mesenchymal Stem Cell Function After High-Dose Steroid Therapy: Case Report and Laboratory Study.
    Yasui Y; Hart DA; Sugita N; Chijimatsu R; Koizumi K; Ando W; Moriguchi Y; Shimomura K; Myoui A; Yoshikawa H; Nakamura N
    Am J Sports Med; 2018 Mar; 46(3):695-701. PubMed ID: 29227146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.
    Nakagawa Y; Muneta T; Otabe K; Ozeki N; Mizuno M; Udo M; Saito R; Yanagisawa K; Ichinose S; Koga H; Tsuji K; Sekiya I
    PLoS One; 2016; 11(2):e0148777. PubMed ID: 26867127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study.
    Mainil-Varlet P; Rieser F; Grogan S; Mueller W; Saager C; Jakob RP
    Osteoarthritis Cartilage; 2001; 9 Suppl A():S6-15. PubMed ID: 11680690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.