BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23018447)

  • 1. Modeling volatilization and adsorption of disinfection byproducts in natural watersheds.
    Jin W; Zhou J; Chen B; Zhu X; Cui C
    J Environ Monit; 2012 Nov; 14(11):2990-9. PubMed ID: 23018447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.
    Richardson SD; Plewa MJ; Wagner ED; Schoeny R; Demarini DM
    Mutat Res; 2007; 636(1-3):178-242. PubMed ID: 17980649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and control of nitrogenous disinfection by-products in drinking water--a review.
    Bond T; Huang J; Templeton MR; Graham N
    Water Res; 2011 Oct; 45(15):4341-54. PubMed ID: 21705040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar photolysis kinetics of disinfection byproducts.
    Chen B; Lee W; Westerhoff PK; Krasner SW; Herckes P
    Water Res; 2010 Jun; 44(11):3401-9. PubMed ID: 20417540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Penetration of polar brominated DBPs through the activated carbon columns during total organic bromine analysis.
    Li Y; Zhang X; Krasner SW; Shang C; Zhai H; Liu J; Yang M
    J Environ Monit; 2011 Oct; 13(10):2851-7. PubMed ID: 21860855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling DBPs formation in drinking water in residential plumbing pipes and hot water tanks.
    Chowdhury S; Rodriguez MJ; Sadiq R; Serodes J
    Water Res; 2011 Jan; 45(1):337-47. PubMed ID: 20732706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of estrogens through water disinfection processes and formation of by-products.
    Pereira RO; Postigo C; de Alda ML; Daniel LA; Barceló D
    Chemosphere; 2011 Feb; 82(6):789-99. PubMed ID: 21087787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.
    Pavelic P; Nicholson BC; Dillon PJ; Barry KE
    J Contam Hydrol; 2005 Mar; 77(1-2):119-41. PubMed ID: 15722175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model development for predicting changes in DBP exposure concentrations during indoor handling of tap water.
    Chowdhury S; Rodriguez MJ; Serodes J
    Sci Total Environ; 2010 Sep; 408(20):4733-43. PubMed ID: 20655096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To add or not to add: the use of quenching agents for the analysis of disinfection by-products in water samples.
    Kristiana I; Lethorn A; Joll C; Heitz A
    Water Res; 2014 Aug; 59():90-8. PubMed ID: 24793107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particles in swimming pool filters--does pH determine the DBP formation?
    Hansen KM; Willach S; Mosbæk H; Andersen HR
    Chemosphere; 2012 Apr; 87(3):241-7. PubMed ID: 22285035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of disinfection by-products in low DOC surface waters in Turkey.
    Ates N; Kaplan SS; Sahinkaya E; Kitis M; Dilek FB; Yetis U
    J Hazard Mater; 2007 Apr; 142(1-2):526-34. PubMed ID: 17034942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay.
    Zhang L; Xu L; Zeng Q; Zhang SH; Xie H; Liu AL; Lu WQ
    Mutat Res; 2012 Jan; 741(1-2):89-94. PubMed ID: 22108252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination.
    Zhai H; Zhang X
    Environ Sci Technol; 2011 Mar; 45(6):2194-201. PubMed ID: 21323365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of disinfection by-products: effect of temperature and kinetic modeling.
    Zhang XL; Yang HW; Wang XM; Fu J; Xie YF
    Chemosphere; 2013 Jan; 90(2):634-9. PubMed ID: 23026162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.
    Smith EM; Plewa MJ; Lindell CL; Richardson SD; Mitch WA
    Environ Sci Technol; 2010 Nov; 44(22):8446-52. PubMed ID: 20964286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging.
    Duirk SE; Lindell C; Cornelison CC; Kormos J; Ternes TA; Attene-Ramos M; Osiol J; Wagner ED; Plewa MJ; Richardson SD
    Environ Sci Technol; 2011 Aug; 45(16):6845-54. PubMed ID: 21761849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of low-molecular weight DBPs and inorganic ions for characterization of high-molecular weight DBPs in drinking water.
    Zhang X; Minear RA
    Water Res; 2006 Mar; 40(5):1043-51. PubMed ID: 16490231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of soluble microbial products by sediments.
    Shi W; Peng H; Wu J; Wu M; Da Li ; Xie W; Ye J; Xu L; Liang Y; Liu W
    Ecotoxicol Environ Saf; 2019 Mar; 169():874-880. PubMed ID: 30597787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water.
    Toor R; Mohseni M
    Chemosphere; 2007 Feb; 66(11):2087-95. PubMed ID: 17095044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.