These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 23018601)

  • 1. Esters flash point prediction using artificial neural networks.
    Astray G; Gálvez JF; Mejuto JC; Moldes OA; Montoya I
    J Comput Chem; 2013 Feb; 34(5):355-9. PubMed ID: 23018601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSPR prediction of flash point of esters by means of GFA and ANFIS.
    Khajeh A; Modarress H
    J Hazard Mater; 2010 Jul; 179(1-3):715-20. PubMed ID: 20381958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network.
    Pan Y; Jiang J; Wang Z
    J Hazard Mater; 2007 Aug; 147(1-2):424-30. PubMed ID: 17292543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural networks in analysis of indinavir and its degradation products retention.
    Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M
    Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.
    Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S
    Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
    Pan Y; Jiang J; Wang R; Cao H; Zhao J
    J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network.
    Skrbić B; Onjia A
    J Chromatogr A; 2006 Mar; 1108(2):279-84. PubMed ID: 16464457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of chemical resistance of dental ceramics by neural network.
    Zivko-Babić J; Lisjak D; Curković L; Jakovac M
    Dent Mater; 2008 Jan; 24(1):18-27. PubMed ID: 17397915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relating formulation variables to in vitro dissolution using an artificial neural network.
    Ebube NK; McCall T; Chen Y; Meyer MC
    Pharm Dev Technol; 1997 Aug; 2(3):225-32. PubMed ID: 9552450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSARs and activity predicting models for competitive inhibitors of adenosine deaminase.
    Sadat Hayatshahi SH; Abdolmaleki P; Ghiasi M; Safarian S
    FEBS Lett; 2007 Feb; 581(3):506-14. PubMed ID: 17250831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.
    Oh HK; Yu MJ; Gwon EM; Koo JY; Kim SG; Koizumi A
    Water Sci Technol; 2004; 50(8):103-10. PubMed ID: 15566193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks.
    Nilsson J; Ohlsson M; Thulin L; Höglund P; Nashef SA; Brandt J
    J Thorac Cardiovasc Surg; 2006 Jul; 132(1):12-9. PubMed ID: 16798296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation.
    Ebell MH
    J Fam Pract; 1993 Mar; 36(3):297-303. PubMed ID: 8454976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin.
    Bingöl D; Hercan M; Elevli S; Kiliç E
    Bioresour Technol; 2012 May; 112():111-5. PubMed ID: 22425399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process.
    Elmolla ES; Chaudhuri M; Eltoukhy MM
    J Hazard Mater; 2010 Jul; 179(1-3):127-34. PubMed ID: 20307930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein secondary structure from circular dichroism spectra using artificial neural network techniques.
    Dalmas B; Hunter GJ; Bannister WH
    Biochem Mol Biol Int; 1994 Aug; 34(1):17-26. PubMed ID: 7849619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of forced expiratory volume in normal and restrictive respiratory functions using spirometry and self-organizing map.
    Manoharan SC; Swaminathan R
    J Med Eng Technol; 2009; 33(7):538-43. PubMed ID: 19484651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of human skin permeability using artificial neural network (ANN) modeling.
    Chen LJ; Lian GP; Han LJ
    Acta Pharmacol Sin; 2007 Apr; 28(4):591-600. PubMed ID: 17376301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng./ml. or less.
    Zlotta AR; Remzi M; Snow PB; Schulman CC; Marberger M; Djavan B
    J Urol; 2003 May; 169(5):1724-8. PubMed ID: 12686818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmaceutical granulation and tablet formulation using neural networks.
    Kesavan JG; Peck GE
    Pharm Dev Technol; 1996 Dec; 1(4):391-404. PubMed ID: 9552323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.