BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23018622)

  • 1. A review of RGD-functionalized nonviral gene delivery vectors for cancer therapy.
    Park J; Singha K; Son S; Kim J; Namgung R; Yun CO; Kim WJ
    Cancer Gene Ther; 2012 Nov; 19(11):741-8. PubMed ID: 23018622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RGD peptide-based non-viral gene delivery vectors targeting integrin α
    Fu S; Xu X; Ma Y; Zhang S; Zhang S
    J Drug Target; 2019 Jan; 27(1):1-11. PubMed ID: 29564914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis.
    Kim WJ; Yockman JW; Lee M; Jeong JH; Kim YH; Kim SW
    J Control Release; 2005 Aug; 106(1-2):224-34. PubMed ID: 15970348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiolabelled RGD peptides for imaging and therapy.
    Gaertner FC; Kessler H; Wester HJ; Schwaiger M; Beer AJ
    Eur J Nucl Med Mol Imaging; 2012 Feb; 39 Suppl 1():S126-38. PubMed ID: 22388629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient transduction of endothelial cells by targeted artificial virus-like particles.
    Müller K; Nahde T; Fahr A; Müller R; Brüsselbach S
    Cancer Gene Ther; 2001 Feb; 8(2):107-17. PubMed ID: 11263526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neovascular targeting with cyclic RGD peptide (cRGDf-ACHA) to enhance delivery of radioimmunotherapy.
    DeNardo SJ; Burke PA; Leigh BR; O'Donnell RT; Miers LA; Kroger LA; Goodman SL; Matzku S; Jonczyk A; Lamborn KR; DeNardo GL
    Cancer Biother Radiopharm; 2000 Feb; 15(1):71-9. PubMed ID: 10740655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delivery of antiangiogenic agents for cancer gene therapy.
    Dickson PV; Nathwani AC; Davidoff AM
    Technol Cancer Res Treat; 2005 Aug; 4(4):331-41. PubMed ID: 16029054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functions and applications of RGD in tumor therapy and tissue engineering.
    Wang F; Li Y; Shen Y; Wang A; Wang S; Xie T
    Int J Mol Sci; 2013 Jun; 14(7):13447-62. PubMed ID: 23807504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature.
    Temming K; Schiffelers RM; Molema G; Kok RJ
    Drug Resist Updat; 2005 Dec; 8(6):381-402. PubMed ID: 16309948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth.
    Gacche RN; Meshram RJ
    Prog Biophys Mol Biol; 2013 Nov; 113(2):333-54. PubMed ID: 24139944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transporting silence: design of carriers for siRNA to angiogenic endothelium.
    Schiffelers RM; Mixson AJ; Ansari AM; Fens MH; Tang Q; Zhou Q; Xu J; Molema G; Lu PY; Scaria PV; Storm G; Woodle MC
    J Control Release; 2005 Dec; 109(1-3):5-14. PubMed ID: 15979191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system.
    Sakurai Y; Hatakeyama H; Sato Y; Hyodo M; Akita H; Ohga N; Hida K; Harashima H
    J Control Release; 2014 Jan; 173():110-8. PubMed ID: 24120854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic RGD peptidomimetic nanoconjugates as effective tumor targeting gene delivery vectors with antimicrobial potential.
    Ahmadi Z; Jha D; Kumar Gautam H; Kumar P; Kumar Sharma A
    Bioorg Chem; 2022 Dec; 129():106197. PubMed ID: 36260955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy.
    Kim JH; Kim YS; Park K; Kang E; Lee S; Nam HY; Kim K; Park JH; Chi DY; Park RW; Kim IS; Choi K; Chan Kwon I
    Biomaterials; 2008 Apr; 29(12):1920-30. PubMed ID: 18289669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrins and angiogenesis: unlocking the route to gene therapy.
    Mistry A; Harbottle R; Hart S; Hodivala-Dilke KM
    Curr Opin Mol Ther; 2003 Dec; 5(6):603-10. PubMed ID: 14755886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice.
    Kim WJ; Yockman JW; Jeong JH; Christensen LV; Lee M; Kim YH; Kim SW
    J Control Release; 2006 Sep; 114(3):381-8. PubMed ID: 16884805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Future prospects and challenges of antiangiogenic cancer gene therapy.
    Samaranayake H; Määttä AM; Pikkarainen J; Ylä-Herttuala S
    Hum Gene Ther; 2010 Apr; 21(4):381-96. PubMed ID: 20163246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiangiogenic gene therapy for cancer via systemic administration of adenoviral vectors expressing secretable endostatin.
    Chen CT; Lin J; Li Q; Phipps SS; Jakubczak JL; Stewart DA; Skripchenko Y; Forry-Schaudies S; Wood J; Schnell C; Hallenbeck PL
    Hum Gene Ther; 2000 Sep; 11(14):1983-96. PubMed ID: 11020798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-angiogenic gene therapy for cancer (review).
    Isayeva T; Kumar S; Ponnazhagan S
    Int J Oncol; 2004 Aug; 25(2):335-43. PubMed ID: 15254730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-targeted polyplexes: one step towards a synthetic virus for cancer gene therapy.
    Nie Y; Schaffert D; Rödl W; Ogris M; Wagner E; Günther M
    J Control Release; 2011 May; 152(1):127-34. PubMed ID: 21392549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.