These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23018795)

  • 1. A novel mutation in VKORC1 and its effect on enzymatic activity in Japanese warfarin-resistant rats.
    Tanaka KD; Kawai YK; Ikenaka Y; Harunari T; Tanikawa T; Fujita S; Ishizuka M
    J Vet Med Sci; 2013 Feb; 75(2):135-9. PubMed ID: 23018795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pesticide resistance in wild mammals--mechanisms of anticoagulant resistance in wild rodents.
    Ishizuka M; Tanikawa T; Tanaka KD; Heewon M; Okajima F; Sakamoto KQ; Fujita S
    J Toxicol Sci; 2008 Aug; 33(3):283-91. PubMed ID: 18670159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warfarin resistance in a French strain of rats.
    Lasseur R; Longin-Sauvageon C; Videmann B; Billeret M; Berny P; Benoit E
    J Biochem Mol Toxicol; 2005; 19(6):379-85. PubMed ID: 16421894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
    Rost S; Fregin A; Ivaskevicius V; Conzelmann E; Hörtnagel K; Pelz HJ; Lappegard K; Seifried E; Scharrer I; Tuddenham EG; Müller CR; Strom TM; Oldenburg J
    Nature; 2004 Feb; 427(6974):537-41. PubMed ID: 14765194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species comparison of vitamin K1 2,3-epoxide reductase activity in vitro: kinetics and warfarin inhibition.
    Wilson CR; Sauer JM; Carlson GP; Wallin R; Ward MP; Hooser SB
    Toxicology; 2003 Aug; 189(3):191-8. PubMed ID: 12832152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy.
    Hammed A; Matagrin B; Spohn G; Prouillac C; Benoit E; Lattard V
    J Biol Chem; 2013 Oct; 288(40):28733-42. PubMed ID: 23928358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of hepatic warfarin metabolism activity in rodenticide-resistant black rats (Rattus rattus) in Tokyo by in situ liver perfusion.
    Takeda K; Ikenaka Y; Tanaka KD; Nakayama SMM; Tanikawa T; Mizukawa H; Ishizuka M
    Pestic Biochem Physiol; 2018 Jun; 148():42-49. PubMed ID: 29891376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The VKORC1 ER-luminal loop mutation (Leu76Pro) leads to a significant resistance to warfarin in black rats (Rattus rattus).
    Takeda K; Ikenaka Y; Fourches D; Tanaka KD; Nakayama SMM; Triki D; Li X; Igarashi M; Tanikawa T; Ishizuka M
    Pestic Biochem Physiol; 2021 Mar; 173():104774. PubMed ID: 33771253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin K requirement and reproduction in bromadiolone-resistant Norway rats.
    Jacob J; Endepols S; Pelz HJ; Kampling E; Cooper TG; Yeung CH; Redmann K; Schlatt S
    Pest Manag Sci; 2012 Mar; 68(3):378-85. PubMed ID: 21919186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D; Hutson SM; Wallin R
    J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver.
    Cain D; Hutson SM; Wallin R
    Thromb Haemost; 1998 Jul; 80(1):128-33. PubMed ID: 9684798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular mechanism for genetic warfarin resistance in the rat.
    Wallin R; Hutson SM; Cain D; Sweatt A; Sane DC
    FASEB J; 2001 Nov; 15(13):2542-4. PubMed ID: 11641264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of warfarin sensitivity between rat and bird species.
    Watanabe KP; Saengtienchai A; Tanaka KD; Ikenaka Y; Ishizuka M
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jun; 152(1):114-9. PubMed ID: 20346414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase complex subunit-1 (VKORC1) using an in vitro DTT-driven assay.
    Bevans CG; Krettler C; Reinhart C; Tran H; Koßmann K; Watzka M; Oldenburg J
    Biochim Biophys Acta; 2013 Aug; 1830(8):4202-10. PubMed ID: 23618698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new cell culture-based assay quantifies vitamin K 2,3-epoxide reductase complex subunit 1 function and reveals warfarin resistance phenotypes not shown by the dithiothreitol-driven VKOR assay.
    Fregin A; Czogalla KJ; Gansler J; Rost S; Taverna M; Watzka M; Bevans CG; Müller CR; Oldenburg J
    J Thromb Haemost; 2013 May; 11(5):872-80. PubMed ID: 23452238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin.
    Rost S; Fregin A; Hünerberg M; Bevans CG; Müller CR; Oldenburg J
    Thromb Haemost; 2005 Oct; 94(4):780-6. PubMed ID: 16270630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avian interspecific differences in VKOR activity and inhibition: Insights from amino acid sequence and mRNA expression ratio of VKORC1 and VKORC1L1.
    Nakayama SMM; Morita A; Ikenaka Y; Kawai YK; Watanabe KP; Ishii C; Mizukawa H; Yohannes YB; Saito K; Watanabe Y; Ito M; Ohsawa N; Ishizuka M
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Feb; 228():108635. PubMed ID: 31639498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confirmation of warfarin resistance of naturally occurring VKORC1 variants by coexpression with coagulation factor IX and in silico protein modelling.
    Müller E; Keller A; Fregin A; Müller CR; Rost S
    BMC Genet; 2014 Feb; 15():17. PubMed ID: 24491178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel mutations in the VKORC1 gene of wild rats and mice--a response to 50 years of selection pressure by warfarin?
    Rost S; Pelz HJ; Menzel S; MacNicoll AD; León V; Song KJ; Jäkel T; Oldenburg J; Müller CR
    BMC Genet; 2009 Feb; 10():4. PubMed ID: 19200363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.