These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23018856)

  • 1. Development of novel carbon fiber produced from waste fiber by carbonization.
    Kawasaki N; Tominaga H; Ogata F; Inoue K; Kankawa M
    J Oleo Sci; 2012; 61(10):593-600. PubMed ID: 23018856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding reactions and pore-forming mechanisms between waste cotton woven and FeCl
    Xu Z; Zhou Y; Sun Z; Zhang D; Huang Y; Gu S; Chen W
    Chemosphere; 2020 Feb; 241():125120. PubMed ID: 31683447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.
    Lu X; Jordan B; Berge ND
    Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure characterization and adsorption properties of pyrolyzed sewage sludge.
    Rio S; Faur-Brasquet C; Le Coq L; Le Cloirec P
    Environ Sci Technol; 2005 Jun; 39(11):4249-57. PubMed ID: 15984807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation.
    Xiong S; Zhang S; Wu Q; Guo X; Dong A; Chen C
    Bioresour Technol; 2014; 152():86-92. PubMed ID: 24280085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis and carbonization of reactive dyes/cotton fiber in hydrothermal environment.
    Shi S; Feng X; Gao L; Tang J; Guo H; Wang S
    Waste Manag; 2020 Feb; 103():370-377. PubMed ID: 31927327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of calcium chloride impregnation on the thermal and high-temperature carbonization properties of bamboo fiber.
    Cheng D; Li T; Smith G; Yang J; Hang C; Miao Z; Wu Z
    PLoS One; 2019; 14(2):e0212886. PubMed ID: 30817796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of electrospun polyacrylonitrile- derived carbon fibers and comparison of properties with bulk form.
    Alarifi IM; Khan WS; Asmatulu R
    PLoS One; 2018; 13(8):e0201345. PubMed ID: 30091992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple novel route for porous carbon production from waste tyre.
    Mozaffarian M; Soleimani M; Bajgiran MA
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31038-31054. PubMed ID: 31456151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal carbonization of municipal waste streams.
    Berge ND; Ro KS; Mao J; Flora JR; Chappell MA; Bae S
    Environ Sci Technol; 2011 Jul; 45(13):5696-703. PubMed ID: 21671644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkali promoted the adsorption of toluene by adjusting the surface properties of lignin-derived carbon fibers.
    Song M; Yu L; Song B; Meng F; Tang X
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22284-22294. PubMed ID: 31152422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High photocatalytic activity of immobilized TiO2 nanorods on carbonized cotton fibers.
    Wang B; Karthikeyan R; Lu XY; Xuan J; Leung MK
    J Hazard Mater; 2013 Dec; 263 Pt 2():659-69. PubMed ID: 24220193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated Carbon Derived from Carbonization of Kevlar Waste Materials: A Novel Single Stage Method.
    Karthik D; Baheti V; Militky J; Naeem MS; Tunakova V; Ali A
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies.
    Wanassi B; Hariz IB; Ghimbeu CM; Vaulot C; Hassen MB; Jeguirim M
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10041-10055. PubMed ID: 28127692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation Methods of Carbonaceous Materials Obtained from Agricultural Waste.
    Canales-Flores RA; Prieto-García F
    Chem Biodivers; 2016 Mar; 13(3):261-268. PubMed ID: 26916140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycle of cotton waste by hard templating with magnesium acetate as MgO precursor.
    Chen W; Qian J; Zhang M; Lu W; Zhang S; Xu H
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29908-29916. PubMed ID: 31410830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of polymeric composites from industrial waste by pyrolysis: Deep evaluation for carbon fibers reuse.
    Abdou TR; Botelho Junior AB; Espinosa DCR; Tenório JAS
    Waste Manag; 2021 Feb; 120():1-9. PubMed ID: 33279821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing Lignosulfonate-Based Activated Carbon Fibers.
    Chang FC; Yen SH; Wang SH
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30275424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption characteristics of bisphenol A onto carbonaceous materials produced from wood chips as organic waste.
    Nakanishi A; Tamai M; Kawasaki N; Nakamura T; Tanada S
    J Colloid Interface Sci; 2002 Aug; 252(2):393-6. PubMed ID: 16290804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting capacitive carbon by carbonization of waste biomass in molten salts.
    Yin H; Lu B; Xu Y; Tang D; Mao X; Xiao W; Wang D; Alshawabkeh AN
    Environ Sci Technol; 2014 Jul; 48(14):8101-8. PubMed ID: 24983414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.