These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 23018861)
21. The interaction between casein micelles and gold nanoparticles. Liu Y; Guo R J Colloid Interface Sci; 2009 Apr; 332(1):265-9. PubMed ID: 19131073 [TBL] [Abstract][Full Text] [Related]
22. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Belikova NA; Vladimirov YA; Osipov AN; Kapralov AA; Tyurin VA; Potapovich MV; Basova LV; Peterson J; Kurnikov IV; Kagan VE Biochemistry; 2006 Apr; 45(15):4998-5009. PubMed ID: 16605268 [TBL] [Abstract][Full Text] [Related]
23. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region. Tomášková N; Varhač R; Lysáková V; Musatov A; Sedlák E Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1073-1083. PubMed ID: 30282605 [TBL] [Abstract][Full Text] [Related]
24. Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions. Roy S; Dasgupta A; Das PK Langmuir; 2006 May; 22(10):4567-73. PubMed ID: 16649765 [TBL] [Abstract][Full Text] [Related]
25. Colorimetric enzymatic activity assay based on noncrosslinking aggregation of gold nanoparticles induced by adsorption of substrate peptides. Oishi J; Asami Y; Mori T; Kang JH; Niidome T; Katayama Y Biomacromolecules; 2008 Sep; 9(9):2301-8. PubMed ID: 18680343 [TBL] [Abstract][Full Text] [Related]
26. Becoming a peroxidase: cardiolipin-induced unfolding of cytochrome c. Muenzner J; Toffey JR; Hong Y; Pletneva EV J Phys Chem B; 2013 Oct; 117(42):12878-86. PubMed ID: 23713573 [TBL] [Abstract][Full Text] [Related]
27. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film. Zhu A; Luo Y; Tian Y Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788 [TBL] [Abstract][Full Text] [Related]
28. Extractive solubilization, structural change, and functional conversion of cytochrome c in ionic liquids via crown ether complexation. Shimojo K; Kamiya N; Tani F; Naganawa H; Naruta Y; Goto M Anal Chem; 2006 Nov; 78(22):7735-42. PubMed ID: 17105166 [TBL] [Abstract][Full Text] [Related]
29. Localization of hydrophobic N-diazeniumdiolates in aqueous micellar solution. Mohr PC; Mohr A; Vila TP; Korth HG Langmuir; 2010 Aug; 26(15):12785-93. PubMed ID: 20614897 [TBL] [Abstract][Full Text] [Related]
30. Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection. Yagati AK; Lee T; Min J; Choi JW Colloids Surf B Biointerfaces; 2012 Apr; 92():161-7. PubMed ID: 22197224 [TBL] [Abstract][Full Text] [Related]
31. Structure of the complex of cytochrome c with cardiolipin in non-polar environment. Vladimirov GK; Vikulina AS; Volodkin D; Vladimirov YA Chem Phys Lipids; 2018 Aug; 214():35-45. PubMed ID: 29856995 [TBL] [Abstract][Full Text] [Related]
32. Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Bae KH; Choi SH; Park SY; Lee Y; Park TG Langmuir; 2006 Jul; 22(14):6380-4. PubMed ID: 16800702 [TBL] [Abstract][Full Text] [Related]
33. Spontaneous formation of vesicles by self-assembly of cationic block copolymer in the presence of anionic surfactants and their application in formation of polymer embedded gold nanoparticles. Banerjee R; Dutta S; Pal S; Dhara D J Phys Chem B; 2013 Apr; 117(13):3624-33. PubMed ID: 23470131 [TBL] [Abstract][Full Text] [Related]
34. Effect of counterions on the activity of lipase in cationic water-in-oil microemulsions. Debnath S; Dasgupta A; Mitra RN; Das PK Langmuir; 2006 Oct; 22(21):8732-40. PubMed ID: 17014111 [TBL] [Abstract][Full Text] [Related]
35. Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles. Jafari Azad V; Kasravi S; Alizadeh Zeinabad H; Memar Bashi Aval M; Saboury AA; Rahimi A; Falahati M J Biomol Struct Dyn; 2017 Sep; 35(12):2565-2577. PubMed ID: 27632558 [TBL] [Abstract][Full Text] [Related]
36. Imidazolium bromide-based ionic liquid assisted improved activity of trypsin in cationic reverse micelles. Debnath S; Das D; Dutta S; Das PK Langmuir; 2010 Mar; 26(6):4080-6. PubMed ID: 20143862 [TBL] [Abstract][Full Text] [Related]
37. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes-modified electrode. Xiang C; Zou Y; Sun LX; Xu F Talanta; 2007 Nov; 74(2):206-11. PubMed ID: 18371631 [TBL] [Abstract][Full Text] [Related]
38. Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface. Shome A; Roy S; Das PK Langmuir; 2007 Apr; 23(8):4130-6. PubMed ID: 17348695 [TBL] [Abstract][Full Text] [Related]
39. Conversion of cytochrome c into a peroxidase: inhibitory mechanisms and implication for neurodegenerative diseases. Patriarca A; Polticelli F; Piro MC; Sinibaldi F; Mei G; Bari M; Santucci R; Fiorucci L Arch Biochem Biophys; 2012 Jun; 522(1):62-9. PubMed ID: 22507899 [TBL] [Abstract][Full Text] [Related]
40. Electrochemistry of cytochrome c1, cytochrome c552, and CuA from the respiratory chain of Thermus thermophilus immobilized on gold nanoparticles. Meyer T; Gross J; Blanck C; Schmutz M; Ludwig B; Hellwig P; Melin F J Phys Chem B; 2011 Jun; 115(21):7165-70. PubMed ID: 21557598 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]