These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23019104)

  • 1. Dielectrophoretic field-flow fractionation of electroporated cells.
    Cemažar J; Kotnik T
    Electrophoresis; 2012 Sep; 33(18):2867-74. PubMed ID: 23019104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoretic field-flow microchamber for separation of biological cells based on their electrical properties.
    Čemažar J; Vrtačnik D; Amon S; Kotnik T
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):36-43. PubMed ID: 21511571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction.
    Nam KH; Chang WJ; Hong H; Lim SM; Kim DI; Koo YM
    Biomed Microdevices; 2005 Sep; 7(3):189-95. PubMed ID: 16133806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoretic-field flow fractionation analysis of dielectric, density, and deformability characteristics of cells and particles.
    Gascoyne PR
    Anal Chem; 2009 Nov; 81(21):8878-85. PubMed ID: 19791772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic device for electric field-driven single-cell capture and activation.
    Toriello NM; Douglas ES; Mathies RA
    Anal Chem; 2005 Nov; 77(21):6935-41. PubMed ID: 16255592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility study for cell electroporation detection and separation by means of dielectrophoresis.
    Oblak J; Krizaj D; Amon S; Macek-Lebar A; Miklavcic D
    Bioelectrochemistry; 2007 Nov; 71(2):164-71. PubMed ID: 17509948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling cell destruction using dielectrophoretic forces.
    Menachery A; Pethig R
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):145-9. PubMed ID: 16441171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroporation of cells in microfluidic droplets.
    Zhan Y; Wang J; Bao N; Lu C
    Anal Chem; 2009 Mar; 81(5):2027-31. PubMed ID: 19199389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroporation of mammalian cells in a microfluidic channel with geometric variation.
    Wang HY; Lu C
    Anal Chem; 2006 Jul; 78(14):5158-64. PubMed ID: 16841942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation.
    Vykoukal J; Vykoukal DM; Freyberg S; Alt EU; Gascoyne PR
    Lab Chip; 2008 Aug; 8(8):1386-93. PubMed ID: 18651083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).
    Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI
    Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells.
    Gagnon ZR
    Electrophoresis; 2011 Sep; 32(18):2466-87. PubMed ID: 21922493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the role of the particle-wall interaction on the separation efficiencies of field flow fractionation dielectrophoretic devices.
    Camarda M; Scalese S; La Magna A
    Electrophoresis; 2015 Jul; 36(13):1396-404. PubMed ID: 25487144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles.
    Yohannes G; Jussila M; Hartonen K; Riekkola ML
    J Chromatogr A; 2011 Jul; 1218(27):4104-16. PubMed ID: 21292269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of field-flow fractionation in proteomics: presence and future.
    Chmelik J
    Proteomics; 2007 Aug; 7(16):2719-28. PubMed ID: 17639605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved sedimentation field-flow fractionation separation channel for concentrated cellular elution.
    Mélin C; Lacroix A; Lalloué F; Pothier A; Zhang LY; Perraud A; Dalmay C; Lautrette C; Jauberteau MO; Cardot P; Mathonnet M; Battu S
    J Chromatogr A; 2013 Aug; 1302():118-24. PubMed ID: 23791448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium.
    Han KH; Frazier AB
    Lab Chip; 2008 Jul; 8(7):1079-86. PubMed ID: 18584082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized Electroporation With Dielectrophoretic Field Flow Fractionation: Toward Removal of Circulating Tumour Cells From Human Blood.
    Kinio S; Mills JK
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):802-809. PubMed ID: 29053456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.