These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 23019314)

  • 21. Mechanisms of striated muscle dysfunction during acute exacerbations of COPD.
    Gayan-Ramirez G; Decramer M
    J Appl Physiol (1985); 2013 May; 114(9):1291-9. PubMed ID: 23372146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Local exercise and oxidative stress in chronic obstructive broncho-pneumopathies: preliminary results].
    Couillard A; Cristol JP; Chanez P; Varray A; Maltais F; Préfaut C
    J Soc Biol; 2001; 195(4):419-25. PubMed ID: 11938559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathophysiology of muscle dysfunction in COPD.
    Gea J; Agustí A; Roca J
    J Appl Physiol (1985); 2013 May; 114(9):1222-34. PubMed ID: 23519228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal muscles in chronic obstructive pulmonary disease: deconditioning, or myopathy?
    Wagner PD
    Respirology; 2006 Nov; 11(6):681-6. PubMed ID: 17052294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased serum inflammatory markers in the absence of clinical and skeletal muscle inflammation in patients with chronic obstructive pulmonary disease.
    Piehl-Aulin K; Jones I; Lindvall B; Magnuson A; Abdel-Halim SM
    Respiration; 2009; 78(2):191-6. PubMed ID: 19270439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mitochondrial phenotype of peripheral muscle in chronic obstructive pulmonary disease: disuse or dysfunction?
    Picard M; Godin R; Sinnreich M; Baril J; Bourbeau J; Perrault H; Taivassalo T; Burelle Y
    Am J Respir Crit Care Med; 2008 Nov; 178(10):1040-7. PubMed ID: 18755922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Greater whole-body myofibrillar protein breakdown in cachectic patients with chronic obstructive pulmonary disease.
    Rutten EP; Franssen FM; Engelen MP; Wouters EF; Deutz NE; Schols AM
    Am J Clin Nutr; 2006 Apr; 83(4):829-34. PubMed ID: 16600935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative assessment of the quadriceps and the diaphragm in patients with COPD.
    Caron MA; Debigaré R; Dekhuijzen PN; Maltais F
    J Appl Physiol (1985); 2009 Sep; 107(3):952-61. PubMed ID: 19359618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peroxisome proliferator-activated receptors: a therapeutic target in COPD?
    Remels AH; Gosker HR; Schrauwen P; Langen RC; Schols AM
    Eur Respir J; 2008 Mar; 31(3):502-8. PubMed ID: 18310397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systemic effects of COPD.
    Decramer M; De Benedetto F; Del Ponte A; Marinari S
    Respir Med; 2005 Dec; 99 Suppl B():S3-10. PubMed ID: 16219454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cachexia and sarcopenia: mechanisms and potential targets for intervention.
    Argilés JM; Busquets S; Stemmler B; López-Soriano FJ
    Curr Opin Pharmacol; 2015 Jun; 22():100-6. PubMed ID: 25974750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impaired Muscle Regeneration in Cancer-Associated Cachexia.
    Arneson PC; Doles JD
    Trends Cancer; 2019 Oct; 5(10):579-582. PubMed ID: 31706505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pro-inflammatory cytokines and oxidative stress/antioxidant parameters characterize the bio-humoral profile of early cachexia in lung cancer patients.
    Fortunati N; Manti R; Birocco N; Pugliese M; Brignardello E; Ciuffreda L; Catalano MG; Aragno M; Boccuzzi G
    Oncol Rep; 2007 Dec; 18(6):1521-7. PubMed ID: 17982639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fiber atrophy, oxidative stress, and oxidative fiber reduction are the attributes of different phenotypes in chronic obstructive pulmonary disease patients.
    Gouzi F; Abdellaoui A; Molinari N; Pinot E; Ayoub B; Laoudj-Chenivesse D; Cristol JP; Mercier J; Hayot M; Préfaut C
    J Appl Physiol (1985); 2013 Dec; 115(12):1796-805. PubMed ID: 24136107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Cachexia in chronic pulmonary obstructive disease].
    Chwist-Nowak A; Rozentryt P; Chwist J; Jarzab J
    Wiad Lek; 2006; 59(1-2):84-8. PubMed ID: 16646299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathogenesis of cancer cachexia.
    Tisdale MJ
    J Support Oncol; 2003; 1(3):159-68. PubMed ID: 15334872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease.
    Barreiro E; de la Puente B; Minguella J; Corominas JM; Serrano S; Hussain SN; Gea J
    Am J Respir Crit Care Med; 2005 May; 171(10):1116-24. PubMed ID: 15735057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenetics and muscle dysfunction in chronic obstructive pulmonary disease.
    Barreiro E; Gea J
    Transl Res; 2015 Jan; 165(1):61-73. PubMed ID: 24794953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic derangements in COPD muscle dysfunction.
    Puente-Maestu L; Lázaro A; Humanes B
    J Appl Physiol (1985); 2013 May; 114(9):1282-90. PubMed ID: 23288549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management.
    Vitorino R; Moreira-Gonçalves D; Ferreira R
    Curr Opin Clin Nutr Metab Care; 2015 May; 18(3):226-33. PubMed ID: 25783794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.