These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23019359)

  • 1. Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding.
    Wang J; Oliveira RJ; Chu X; Whitford PC; Chahine J; Han W; Wang E; Onuchic JN; Leite VB
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15763-8. PubMed ID: 23019359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the Intrinsic Conformation Energy Landscape Topography of Proteins with Large-Scale Open-Closed Transition.
    Chu WT; Wang J
    ACS Cent Sci; 2018 Aug; 4(8):1015-1022. PubMed ID: 30159398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition.
    Chu X; Gan L; Wang E; Wang J
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):E2342-51. PubMed ID: 23754431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative criteria for native energetic heterogeneity influences in the prediction of protein folding kinetics.
    Cho SS; Levy Y; Wolynes PG
    Proc Natl Acad Sci U S A; 2009 Jan; 106(2):434-9. PubMed ID: 19075236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The folding energy landscape and free energy excitations of cytochrome c.
    Weinkam P; Zimmermann J; Romesberg FE; Wolynes PG
    Acc Chem Res; 2010 May; 43(5):652-60. PubMed ID: 20143816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.
    Chu X; Wang J
    PLoS Comput Biol; 2014 Aug; 10(8):e1003782. PubMed ID: 25144525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the roughness on the free energy landscape: entropic bottlenecks and protein folding rates.
    Chavez LL; Onuchic JN; Clementi C
    J Am Chem Soc; 2004 Jul; 126(27):8426-32. PubMed ID: 15237999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buffed energy landscapes: another solution to the kinetic paradoxes of protein folding.
    Plotkin SS; Wolynes PG
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4417-22. PubMed ID: 12677002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family.
    Wensley BG; Batey S; Bone FA; Chan ZM; Tumelty NR; Steward A; Kwa LG; Borgia A; Clarke J
    Nature; 2010 Feb; 463(7281):685-8. PubMed ID: 20130652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties.
    Veitshans T; Klimov D; Thirumalai D
    Fold Des; 1997; 2(1):1-22. PubMed ID: 9080195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape.
    Baumketner A; Jewett A; Shea JE
    J Mol Biol; 2003 Sep; 332(3):701-13. PubMed ID: 12963377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing energy and entropy: a minimalist model for the characterization of protein folding landscapes.
    Das P; Matysiak S; Clementi C
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10141-6. PubMed ID: 16006532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the relationship between funneled energy landscapes and two-state protein folding.
    Konermann L
    Proteins; 2006 Oct; 65(1):153-63. PubMed ID: 16894617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple routes lead to the native state in the energy landscape of the beta-trefoil family.
    Chavez LL; Gosavi S; Jennings PA; Onuchic JN
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10254-10258. PubMed ID: 16801558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein energy landscape exploration with structure-based models.
    Neelamraju S; Wales DJ; Gosavi S
    Curr Opin Struct Biol; 2020 Oct; 64():145-151. PubMed ID: 32795948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Go-like interactions on global shapes of energy landscapes in beta-barrel forming model proteins: inherent structure analysis and statistical temperature molecular dynamics simulation.
    Kim J; Keyes T
    J Phys Chem B; 2008 Jan; 112(3):954-66. PubMed ID: 18088107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying Nonnative Interactions in the Protein-Folding Free-Energy Landscape.
    Mouro PR; de Godoi Contessoto V; Chahine J; Junio de Oliveira R; Pereira Leite VB
    Biophys J; 2016 Jul; 111(2):287-293. PubMed ID: 27463131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetry and frustration in protein energy landscapes: a near degeneracy resolves the Rop dimer-folding mystery.
    Levy Y; Cho SS; Shen T; Onuchic JN; Wolynes PG
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2373-8. PubMed ID: 15701699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy landscape theory, funnels, specificity, and optimal criterion of biomolecular binding.
    Wang J; Verkhivker GM
    Phys Rev Lett; 2003 May; 90(18):188101. PubMed ID: 12786043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding Free Energy Landscape of Ordered and Intrinsically Disordered Proteins.
    Chong SH; Ham S
    Sci Rep; 2019 Oct; 9(1):14927. PubMed ID: 31624293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.