These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23019466)

  • 1. Restructuring polymers via nanoconfinement and subsequent release.
    Tonelli AE
    Beilstein J Org Chem; 2012; 8():1318-32. PubMed ID: 23019466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reorganizing Polymer Chains with Cyclodextrins.
    Gurarslan A; Joijode A; Shen J; Narayanan G; Antony GJ; Li S; Caydamli Y; Tonelli AE
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Restructuring of Polymer Materials to Produce Single Polymer Composites and Miscible Blends.
    Tonelli AE
    Biomolecules; 2019 Jun; 9(6):. PubMed ID: 31248211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting and crystallization behaviors of biodegradable polymers enzymatically coalesced from their cyclodextrin inclusion complexes.
    Wei M; Shuai X; Tonelli AE
    Biomacromolecules; 2003; 4(3):783-92. PubMed ID: 12741799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-Crystallization between Aliphatic Polyesters through Co-Inclusion Complexation with Small Molecule.
    Chen JY; Zhang XW; Wu TY; Ye HM
    Molecules; 2023 May; 28(10):. PubMed ID: 37241832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivery of pharmaceuticals and other active ingredients with their crystalline cyclodextrin inclusion compounds.
    Tonelli AE; Shen J
    Int J Pharm; 2020 Nov; 589():119856. PubMed ID: 32898635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin.
    Li J; Ni X; Zhou Z; Leong KW
    J Am Chem Soc; 2003 Feb; 125(7):1788-95. PubMed ID: 12580604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of and coalescence from the inclusion complex of a biodegradable block copolymer and alpha-cyclodextrin. 2: A novel way to regulate the biodegradation behavior of biodegradable block copolymers.
    Shuai X; Wei M; Porbeni FE; Bullions TA; Tonelli AE
    Biomacromolecules; 2002; 3(1):201-7. PubMed ID: 11866574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The guest polymer effect on the dissolution of drug-polymer crystalline inclusion complexes.
    Chen L; Huang Y
    RSC Adv; 2021 Apr; 11(22):13091-13096. PubMed ID: 35423840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coalesced poly(ε-caprolactone) fibers are stronger.
    Gurarslan A; Caydamli Y; Shen J; Tse S; Yetukuri M; Tonelli AE
    Biomacromolecules; 2015 Mar; 16(3):890-3. PubMed ID: 25615714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers.
    Fernández J; Etxeberria A; Sarasua JR
    J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreversible adsorption of polymer melts and nanoconfinement effects.
    Napolitano S
    Soft Matter; 2020 Jun; 16(23):5348-5365. PubMed ID: 32419002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity in polymer melts from melting of polymer crystals.
    Rastogi S; Lippits DR; Peters GW; Graf R; Yao Y; Spiess HW
    Nat Mater; 2005 Aug; 4(8):635-41. PubMed ID: 16041376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the Nanoconfinement Effect on Crystallization of Semicrystalline Polymers Using Coarse-Grained Molecular Dynamics Simulations.
    Yang J; Chen Y; Yang Z; Dai L; Choi H; Meng Z
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition between Structural Relaxation and Crystallization in the Glass Transition Range of Random Copolymers.
    Schawe JEK; Wrana C
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32784476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compatibilization of All-Conjugated Polymer Blends for Organic Photovoltaics.
    Lombeck F; Sepe A; Thomann R; Friend RH; Sommer M
    ACS Nano; 2016 Aug; 10(8):8087-96. PubMed ID: 27482842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular insights into the formation of drug-polymer inclusion complex.
    Liu B; Li C; Chen Z; Ou X; Li S; Li A; Chen P; Lu M
    Int J Pharm; 2024 Mar; 652():123761. PubMed ID: 38184024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular approaches towards ordered polymer materials.
    Uemura T
    Chemistry; 2014 Feb; 20(6):1482-9. PubMed ID: 24443289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.